打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁fffz分析Part7”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
fffz分析Part7
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本词条展示[[Fake Fake Fake Zeta|fffz]]分析的第七部分。使用<math>MOCF</math>和[[BMS]]对照 <nowiki>\begin{align}s\\&\psi_Z[\varepsilon_0^{\varepsilon_0^\omega}](\varepsilon_0^{\varepsilon_0^\omega})=\psi((2-)^\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega})=\psi((2-)^{((2))})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}+\varepsilon_0)=\psi((2-)^{(1-2)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}+\varepsilon_0^2)=\psi((2-)^{(1-1-2)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}+\varepsilon_0^{\varepsilon_0})=\psi((2-)^{(1-(2~1-2))})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}+\varepsilon_0^{\varepsilon_0^2})=\psi((2-)^{(1-2-2)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}+\varepsilon_0^{\varepsilon_0^3})=\psi((2-)^{(1-2-2-2)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^\omega}\times2](\varepsilon_0^{\varepsilon_0^\omega}\times2)=\psi((2-)^{(2-)^\omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}\times2)=\psi((2-)^{(2-)^{((2))}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}\times3)=\psi((2-)^{(2-)^{(2-)^{((2))}}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^\omega}\times\omega](\varepsilon_0^{\varepsilon_0^\omega}\times\omega)=\psi((2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega}\times\omega)=\psi((1-)^{((2))}~~(1-)^{((2-)^{(1,0)})}~~\rm aft~~(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega+1})=\psi(1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega+2})=\psi(1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^\omega+\omega}](\varepsilon_0^{\varepsilon_0^\omega+\omega})=\psi((1-)^\omega~(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega+\omega})=\psi((1-)^{((2))}~(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega+\varepsilon_0})=\psi(1-2~~1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega+\varepsilon_0^2})=\psi(1-2-2~~1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^\omega\times2}](\varepsilon_0^{\varepsilon_0^\omega\times2})=\psi((2-)^\omega~~1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega\times2})=\psi((2-)^{((2))}~~1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega\times3})=\psi((2-)^\omega~~1-(2-)^{(1,0)}~~1-(2-)^{(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,1)(4,1,0)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^\omega\times\omega}](\varepsilon_0^{\varepsilon_0^\omega\times\omega})=\psi(((2-)^{(1,0)}~~1-)^\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^\omega\times\omega})=\psi(((2-)^{(1,0)}~~1-)^{((2))})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega+1}})=\psi(1-(2-)^{(1,1)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega+2}})=\psi(1-(2-)^{(1,2)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega+3}})=\psi(1-(2-)^{(1,3)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(3,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\omega\times2}}](\varepsilon_0^{\varepsilon_0^{\omega\times2}})=\psi((2-)^{(1,\omega)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega\times2}})=\psi((2-)^{(1,\Omega)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega\times2}}+\varepsilon_0)=\psi((2-)^{(1,\Omega_\omega)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)(1,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega\times2}}+\varepsilon_0^{\varepsilon_0})=\psi((2-)^{(1,I_\omega)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\omega\times2}}\times2)=\psi((2-)^{(1,(2-)^{\Omega})})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\omega\times2}}\times\omega](\varepsilon_0^{\varepsilon_0^{\omega\times2}}\times\omega)=\psi((2-)^{(1,(2-)^{(1,0)}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\omega^2}}\times\omega](\varepsilon_0^{\varepsilon_0^{\omega^2}}\times\omega)=\psi((2-)^{(1,0,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)(4,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\omega^\omega}}\times\omega](\varepsilon_0^{\varepsilon_0^{\omega^\omega}}\times\omega)=\psi((2-)^{(1@\Omega)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(3,1,1)(4,1,0)(5,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0}})=\psi(\psi_{\Omega_{K+1}}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}})=\psi(K_\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega})=\psi(K_\Omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}+\varepsilon_0^{\varepsilon_0^3+\omega})=\psi(K_{N_\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}+\varepsilon_0^{\varepsilon_0^3+\omega}+\varepsilon_0^{\varepsilon_0^2+\omega})=\psi(K_{N_{M_\Omega}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}+\varepsilon_0^{\varepsilon_0^3+\omega}+\varepsilon_0^{\varepsilon_0^2+\omega}+\varepsilon_0^{\varepsilon_0+\omega})=\psi(K_{N_{M_{I_\Omega}}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}+\varepsilon_0^{\varepsilon_0^3+\omega}+\varepsilon_0^{\varepsilon_0^2+\omega}+\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0)=\psi(K_{N_{M_{I_{\Omega_\omega}}}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+1},\psi_Z[\varepsilon_0^{\varepsilon_0^3}](\varepsilon_0^{\varepsilon_0^3})\times\omega](\psi_Z[\varepsilon_0^{\varepsilon_0^3}](\varepsilon_0^{\varepsilon_0^3})\times\omega)^?=\psi(K_{N_{K+1}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,1)(6,2,1)(7,2,1)(8,2,1)(7,2,0)(5,2,1)(6,2,1)(7,2,1)(7,2,1)(7,2,0)(8,3,1)(9,3,1)(10,3,1)(11,3,1)(9,3,1)(10,3,1)(8,3,1)(9,3,1)(10,3,1)(10,3,1)(10,2,0)(6,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}\times\omega](\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}\times\omega)=\psi((1-)^{(1,0)}~~3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega\times2}\times\omega)=\psi(2~~1-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\varepsilon_0^2}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\varepsilon_0^2})=\psi(1-2-2~~1-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\varepsilon_0^\omega}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\varepsilon_0^\omega})=\psi((2-)^\omega~~1-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\varepsilon_0^\omega})=\psi((2-)^{((2))}~~1-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}\times2})=\psi(1-3~~1-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}\times3})=\psi(1-3~~1-3~~1-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0+1}})=\psi(1-2-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0+2}})=\psi(1-2-2-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0+\omega}}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0+\omega}})=\psi((2-)^\omega~~3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0+\omega}})=\psi((2-)^{((2))}~~3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0\times2}})=\psi(1-3~~2-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0\times3}})=\psi(1-3~~2-3~~2-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4,1,1)(3,1,1)(4,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0\times\omega}}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0\times\omega}})=\psi((3~~2-)^\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0\times\omega}})=\psi((3~~2-)^{((2))})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^2}})=\psi(3-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^3}})=\psi(3-3-3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4,1,1)(4,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0^\omega}}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0^\omega}})=\psi((3-)^\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^\omega}})=\psi((3-)^{((2))})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}})=\psi((1-)^{(1,0)}~~\rm aft~~3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}})=\psi(\kappa_\omega)=\psi(1-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}+1})=\psi(1-1-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}+\varepsilon_0})=\psi(1-2~~1-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}+\varepsilon_0^2})=\psi(1-2-2~~1-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(2,1,1)(3,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}+\varepsilon_0^{\varepsilon_0}})=\psi(1-3~~1-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(2,1,1)(3,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}\times2})=\psi(1-4~~1-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+1}})=\psi(1-2-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+2}})=\psi(1-2-2-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(3,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\varepsilon_0}})=\psi(1-3~~2-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(3,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}\times2}})=\psi(1-4~~2-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(3,1,1)(4,1,1)(5,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0+1}}})=\psi(1-3-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(4,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0\times2}}})=\psi(1-4~~3-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(4,1,1)(5,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0^2}}})=\psi(1-4-4)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(5,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0^\omega}}}](\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0^\omega}}})=\psi((4-)^\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(6,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0^\omega}}})=\psi((4-)^{((2))})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(6,1,0)\\&\psi_Z(\varepsilon_0\uparrow\uparrow5)=\psi(1-5)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(6,1,1)\\&\psi_Z(\varepsilon_0\uparrow\uparrow6)=\psi(1-6)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(6,1,1)(7,1,1)\\&\psi_Z(\varepsilon_0\uparrow\uparrow7)=\psi(1-7)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1)(6,1,1)(7,1,1)(8,1,1)\\&\LARGE\color{red}{\psi_Z[\varepsilon_1](\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0)=\rm SSO}\end{align}</nowiki> <nowiki>\begin{align}s\\&\psi_Z[\varepsilon_1](\varepsilon_1+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(1,1,1)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0+\Omega_\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1+\varepsilon_0^{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(1,1,1)(2,1,1)(3,1,1)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0+I_\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1+\varepsilon_0^{\varepsilon_0^{\varepsilon_0}})=(0,0,0)(1,1,1)(2,2,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0+K_\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times2)=(0,0,0)(1,1,1)(2,2,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0\times2)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times3)=(0,0,0)(1,1,1)(2,2,0)(1,1,1)(2,2,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0\times3)\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\omega](\varepsilon_1\times\omega)=(0,0,0)(1,1,1)(2,2,0)(2,0,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0\times\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0\times\Omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\omega+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(1,1,1)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0\times\Omega_\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\omega+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0^2)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\omega\times2+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(2,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0^3)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\omega^2+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0^{\lambda\alpha.(\alpha+1)-\Pi_0})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\varepsilon_1\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,0)=\psi(\psi_{\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+1}}(0))\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\zeta_0)=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,0)(4,2,0)=\psi(\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+1})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)=\psi(\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)=\psi(\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega^2})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0,\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega)](\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,0,0)=\psi(\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega^\omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,1,0)=\psi(\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+\Omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,2,0)=\psi(\Omega_{\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+1}})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^\omega\times2))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,2,0)(3,2,1)(4,2,1)(5,2,0)=\psi(\Omega_{\Omega_{\Omega_{\lambda\alpha.(\alpha+1)-\Pi_0+1}}})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,2,1)=\psi(I_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^{\varepsilon_0^2}))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,2,1)(5,2,1)=\psi(M_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^{\varepsilon_0^3}))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,2,1)(5,2,1)(5,2,1)=\psi(N_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,2,1)(5,2,1)(6,2,1)=\psi(K_{\lambda\alpha.(\alpha+1)-\Pi_0+\omega})\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,3,0)=\psi(2\mathrm{nd}~~\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0](\psi_Z[\varepsilon_1](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,0)(2,1,0)(3,2,1)(4,3,0)(4,2,0)(5,2,1)(6,4,0)=\psi(3\mathrm{rd}~~\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)=\psi(1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\varepsilon_0^2)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(2,1,1)=\psi(1-1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0^\omega](\varepsilon_1\times\varepsilon_0^\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,0,0)=\psi((1-)^\omega~~\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\varepsilon_0^\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,1,0)=\psi((1-)^{((2))}~~\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0^\omega\times\omega](\varepsilon_1\times\varepsilon_0^\omega\times\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,1,0)(2,0,0)=\psi((1-)^{(1,0)}~~\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varepsilon_1\times\varepsilon_0^{\omega\times2}\times\omega](\varepsilon_1\times\varepsilon_0^{\omega\times2}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)=\psi(2~~1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\varepsilon_0^{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,1,1)=\psi(1-2~~1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\varepsilon_0^{\varepsilon_0^2})=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,1,1)(3,1,1)=\psi(1-2-2~~1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1\times\varepsilon_0^{\varepsilon_0^{\varepsilon_0}})=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,1,1)(4,1,1)=\psi(3~~1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1^2)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0~~1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1^3)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)(2,1,1)(3,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0~~1-\lambda\alpha.(\alpha+1)-\Pi_0~~1-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varepsilon_1^\omega](\varepsilon_1^\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)(3,0,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0~~1-)^\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_1^\omega)=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)(3,1,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0~~1-)^{((2))})\\&\psi_Z[\varepsilon_1](\varepsilon_1^{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)(3,1,1)=\psi(1-2-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1^{\varepsilon_1})=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0~~2-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_1^{\varepsilon_1^{\varepsilon_1}})=(0,0,0)(1,1,1)(2,2,0)(2,1,1)(3,2,0)(3,1,1)(4,2,0)(4,1,1)(5,2,0)=\psi(\lambda\alpha.(\alpha+1)-\Pi_0~~3-\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_2)=(0,0,0)(1,1,1)(2,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_3)=(0,0,0)(1,1,1)(2,2,0)(2,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0))\\&\psi_Z[\varepsilon_1,\varepsilon_\omega](\varepsilon_\omega)=(0,0,0)(1,1,1)(2,2,0)(3,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{((2))})\\&\psi_Z[\varepsilon_1,\varepsilon_\omega\times\omega](\varepsilon_\omega\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,0)})\\&\psi_Z[\varepsilon_1](\varepsilon_{\omega+1})=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(2,2,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,1)})\\&\psi_Z[\varepsilon_1](\varepsilon_{\omega+2})=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(2,2,0)(2,2,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,2)})\\&\psi_Z[\varepsilon_1,\varepsilon_{\omega\times2}](\varepsilon_{\omega\times2})=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(3,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,\omega)})\\&\psi_Z[\varepsilon_1](\varepsilon_{\omega\times2})=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(3,1,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,\Omega)})\\&\psi_Z[\varepsilon_1,\varepsilon_{\omega\times2}\times\omega](\varepsilon_{\omega\times2}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(3,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,0,0)})\\&\psi_Z[\varepsilon_1,\varepsilon_{\omega^2}\times\omega](\varepsilon_{\omega^2}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(4,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1@(1,0))})\\&\psi_Z[\varepsilon_1,\varepsilon_{\omega^\omega}\times\omega](\varepsilon_{\omega^\omega}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(4,1,0)(5,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1@(1@(1,0)))})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0}](\varepsilon_{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(4,2,0)=\psi(\psi_{\Omega_{\lambda\alpha.(\alpha+1)-\Pi_1+1}}(0))\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0}](\zeta_0)=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_{\lambda\alpha.(\alpha+1)-\Pi_1+1})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0}](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(4,2,1)(5,3,0)=\psi(2\rm nd~~\lambda\alpha.(\alpha+1)-\Pi_1)\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0}](\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0}](\psi_Z[\varepsilon_1](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,0)(3,1,0)(4,2,1)(5,3,0)(6,2,0)(7,3,1)(8,4,0)=\psi(3\rm rd~~\lambda\alpha.(\alpha+1)-\Pi_1)\\&\color{red}{\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)=\psi(1-\lambda\alpha.(\alpha+1)-\Pi_1)}\end{align}</nowiki> <nowiki>\begin{align}s\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0}\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,1,1)=\psi(1-1-\lambda\alpha.(\alpha+1)-\Pi_1)\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0}\times\varepsilon_0^{\omega\times2}\times\omega](\varepsilon_{\varepsilon_0}\times\varepsilon_0^{\omega\times2}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)=\psi(2~~1-\lambda\alpha.(\alpha+1)-\Pi_1)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0}\times\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,1,1)(3,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)~~1-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0+1})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0+2})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0\times2})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,2,0)(3,1,1)=\psi((\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0\times3})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(2,2,0)(3,1,1)(2,2,0)(3,1,1)=\psi((\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0\times\omega}](\varepsilon_{\varepsilon_0\times\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(3,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-)^\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0\times\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(3,1,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-)^{((2))})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0\times\omega}\times\omega](\varepsilon_{\varepsilon_0\times\omega}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(3,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1,0)})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0\times\omega^2}\times\omega](\varepsilon_{\varepsilon_0\times\omega^2}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(3,1,0)(4,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-)^{(1@(1,0))})\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0^2})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(3,1,1)=\psi(1-(\lambda\alpha.(\alpha+1)-\Pi_1)-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0^3})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(3,1,1)(3,1,1)=\psi(1-(\lambda\alpha.(\alpha+1)-\Pi_1)-(\lambda\alpha.(\alpha+1)-\Pi_1)-(\lambda\alpha.(\alpha+1)-\Pi_1))\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0^\omega}](\varepsilon_{\varepsilon_0^\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)-)^\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0^\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,1,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)-)^{((2))})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0^\omega}\times\omega](\varepsilon_{\varepsilon_0^\omega}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_1)-)^{(1,0)})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_0^{\varepsilon_0}}](\varepsilon_{\varepsilon_0^{\varepsilon_0}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,1,0)(5,2,0)=\psi(\psi_{\Omega_{\lambda\alpha.(\alpha+1)-\Pi_2+1}}(0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0^{\varepsilon_0}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,1,1)=\psi(1-\lambda\alpha.(\alpha+1)-\Pi_2)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,1,1)(5,1,1)=\psi(1-\lambda\alpha.(\alpha+1)-\Pi_3)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\alpha+2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1}\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(2,1,1)=\psi(1-\lambda\alpha.(\alpha+2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1+1})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1+\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(2,2,0)(3,1,1)=\psi(1-(\lambda\alpha.(\alpha+1)-\Pi_1)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1\times2})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(2,2,0)(3,1,1)(4,2,0)=\psi(1-(\lambda\alpha.(\alpha+2)-\Pi_0)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1\times\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(3,1,0)=\psi(((\lambda\alpha.(\alpha+2)-\Pi_0)~~(\lambda\alpha.(\alpha+1)-\Pi_0)-)^{((2))})\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1\times\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(3,1,1)=\psi(1-(\lambda\alpha.(\alpha+1)-\Pi_1)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1^2})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(3,1,1)(4,2,0)=\psi((\lambda\alpha.(\alpha+2)-\Pi_0)~~(\lambda\alpha.(\alpha+1)-\Pi_1)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_1^\omega}](\varepsilon_{\varepsilon_1^\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(4,0,0)=\psi(((\lambda\alpha.(\alpha+2)-\Pi_0)~~(\lambda\alpha.(\alpha+1)-\Pi_1)-)^\omega)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1^{\varepsilon_0}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(4,1,1)=\psi(1-(\lambda\alpha.(\alpha+1)-\Pi_2)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_1^{\varepsilon_1}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(4,1,1)(5,2,0)(5,1,1)=\psi(1-(\lambda\alpha.(\alpha+1)-\Pi_3)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_2})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(4,2,0)=\psi((\lambda\alpha.(\alpha+2)-\Pi_0)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_3})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(4,2,0)(4,2,0)=\psi((\lambda\alpha.(\alpha+2)-\Pi_0)-(\lambda\alpha.(\alpha+2)-\Pi_0)-(\lambda\alpha.(\alpha+2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_\omega})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,0)=\psi(((\lambda\alpha.(\alpha+2)-\Pi_0)-)^{((2))})\\&\psi_Z[\varepsilon_1,\varepsilon_{\varepsilon_\omega}\times\omega](\varepsilon_{\varepsilon_\omega}\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,0)(2,0,0)=\psi(((\lambda\alpha.(\alpha+2)-\Pi_0)-)^{(1,0)})\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_{\varepsilon_0}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,1)=\psi(1-\lambda\alpha.(\alpha+2)-\Pi_1)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_{\varepsilon_0^{\varepsilon_0}}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,1)(6,1,1)=\psi(1-\lambda\alpha.(\alpha+2)-\Pi_2)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,1)(6,1,1)(7,1,1)=\psi(1-\lambda\alpha.(\alpha+2)-\Pi_3)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_{\varepsilon_1}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,1)(6,2,0)=\psi(\lambda\alpha.(\alpha+3)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_1}}})=(0,0,0)(1,1,1)(2,2,0)(3,1,1)(4,2,0)(5,1,1)(6,2,0)(7,1,1)(8,2,0)=\psi(\lambda\alpha.(\alpha+4)-\Pi_0)\\&\psi_Z[\varepsilon_1](\zeta_0)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha+\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varepsilon_{\zeta_0+1})=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+\omega)-\Pi_0))\\&\psi_Z[\varepsilon_1](\zeta_1)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(2,2,0)(3,2,0)=\psi((\lambda\alpha.(\alpha+\omega)-\Pi_0)-(\lambda\alpha.(\alpha+\omega)-\Pi_0))\\&\psi_Z[\varepsilon_1](\zeta_\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(3,1,0)=\psi(((\lambda\alpha.(\alpha+\omega)-\Pi_0)-)^{((2))})\\&\psi_Z[\varepsilon_1](\zeta_{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(3,1,1)=\psi(1-\lambda\alpha.(\alpha+\omega)-\Pi_1)\\&\psi_Z[\varepsilon_1](\zeta_{\varepsilon_1})=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\alpha+\omega+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\zeta_{\zeta_0})=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(3,1,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\alpha+\omega\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\eta_0)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha+\omega^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(4,0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha+\omega^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varphi(\omega,0)](\varphi(\omega,0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,0,0)=\psi(\lambda\alpha.(\alpha+\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\varphi(\omega,0)](\varphi(\varepsilon_0,0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,0,0)(5,1,0)=\psi(\lambda\alpha.(\alpha+\psi(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(\omega,0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)=\psi(\lambda\alpha.(\alpha+\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(\omega,0)+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)=\psi(\lambda\alpha.(\alpha+\Omega_\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(\omega,0)+\varepsilon_0^{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,1,1)(3,1,1)=\psi(\lambda\alpha.(\alpha+I_\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(\omega,0)+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+\lambda\alpha.(\alpha+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(\omega,0)\times2+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+\lambda\alpha.(\alpha+\lambda\alpha.(\alpha+1)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\varphi(\omega,0)\times3+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha+\lambda\alpha.(\alpha+\lambda\alpha.(\alpha+\lambda\alpha.(\alpha+1)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)\\&\LARGE\color{red}{\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^\omega)\times\omega](\psi_Z[\omega^\omega](\omega^\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times2)-\Pi_0)=\rm LSO}\end{align}</nowiki> [[分类:分析]]
返回
fffz分析Part7
。
查看“︁fffz分析Part7”︁的源代码
来自Googology Wiki