打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁fffz分析Part4:JO~TBO”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
fffz分析Part4:JO~TBO
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目展示[[Fake Fake Fake Zeta|fffz]]分析的第五部分(标题打错了)。使用<math>MOCF</math>和[[BMS]]对照 <nowiki>\begin{align}s\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_0^{\varepsilon_0})=\psi(\psi_{\Omega_{I+1}}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0},\varepsilon_0^{\varepsilon_0}+\omega](\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_0^{\varepsilon_0}))=\psi(\psi_{\Omega_{I+1}}(0))^2=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(1,0,0)(2,1,1)(3,1,0)(4,2,0)=\mathrm{JOJO(JO^2)}\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_1)=\psi(\psi_{\Omega_{I+1}}(1))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(4,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_2)=\psi(\psi_{\Omega_{I+1}}(2))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(4,2,0)(4,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_\omega)=\psi(\psi_{\Omega_{I+1}}(\Omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_\omega+\varepsilon_0)=\psi(\psi_{\Omega_{I+1}}(\Omega_\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_{\varepsilon_0})=\psi(\psi_{\Omega_{I+1}}(\psi_{\Omega_{I+1}}(0)))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,1,0)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_{\varepsilon_{\varepsilon_0}})=\psi(\psi_{\Omega_{I+1}}(\psi_{\Omega_{I+1}}(\psi_{\Omega_{I+1}}(0))))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,1,0)(6,2,0)(7,1,0)(8,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\zeta_0)=\psi(\Omega_{I+1})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0](\zeta_0))=\psi(\Omega_{I+2})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,3,0)(6,3,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\zeta_0)))=\psi(\Omega_{I+3})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)(5,3,0)(6,4,0)(7,4,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0))=\psi(\Omega_{I+\omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^2))=\psi(\Omega_{I+\omega^2})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^3))=\psi(\Omega_{I+\omega^3})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^\omega))=\psi(\Omega_{I+\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^\omega\times2))=\psi(\Omega_{\Omega_{I+1}})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^\omega\times3))=\psi(\Omega_{\Omega_{\Omega_{I+1}}})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(4,2,1)(5,2,1)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0},\psi_Z(\varepsilon_0^\omega\times\omega)](\psi_Z(\varepsilon_0^\omega\times\omega))=\psi(\psi_{I_2}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^\omega\times\omega))=\psi(\psi_{I_2}(0)\times\Omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\omega+1}](\varepsilon_0^{\omega+1}))=\psi(\Omega_{\Omega_{\psi_{I_2}(0)+1}})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,0)(6,3,1)(7,3,1)(8,3,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\omega+1}](\varepsilon_0^{\omega+1}\times\omega))=\psi(\psi_{I_2}(1))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,0)(6,3,1)(7,3,1)(8,3,0)(7,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\omega+1}](\psi_Z[\varepsilon_0^{\omega+1}](\varepsilon_0^{\omega+1}\times\omega)))=\psi(\psi_{I_2}(2))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,0)(6,3,1)(7,3,1)(8,3,0)(7,3,0)(6,3,0)(7,4,1)(8,5,1)(9,4,0)(8,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega+1}))=\psi(\psi_{I_2}(\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega+2}))=\psi(\psi_{I_2}(\omega^2))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega+3}))=\psi(\psi_{I_2}(\omega^3))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(5,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega\times2}))=\psi(\psi_{I_2}(\Omega_{I+1}))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega\times2}\times\omega))=\psi(I_2)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega\times2+1}))=\psi(I_2\times\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,2,0)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega\times2+2}\times\omega))=\psi(I_2^2)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,2,0)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega^2}\times\omega))=\psi(I_2^{I_2})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega^{\omega^2}}\times\omega))=\psi(I_2^{I_2^{I_2}})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(7,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\varepsilon_0}](\varepsilon_0^{\varepsilon_0}))=\psi(\psi_{\Omega_{I_2+1}}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(7,3,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega\times2+1}\times\omega)))=\psi(I_3)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(7,3,1)(8,3,1)(9,3,0)(8,3,1)(9,3,0)(8,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^{\omega\times2+1}\times\omega))))=\psi(I_4)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(7,3,1)(8,3,1)(9,3,0)(10,4,1)(11,4,1)(12,4,0)(11,4,1)(12,4,0)(11,0,0)\\&\large\color{red}{\psi_Z(\varepsilon_0^{\varepsilon_0})=\psi(I_\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)=\mathrm{SIO}}\end{align}</nowiki> <nowiki>\begin{align}s\\&\psi_Z(\varepsilon_0^{\varepsilon_0}+\varepsilon_0)=\psi(I_\omega+\Omega_\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(1,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0}+\varepsilon_0^2)=\psi(I_\omega+\Omega_{\omega^2})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(1,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0}\times2)=\psi(I_\omega\times2)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0}\times3)=\psi(I_\omega\times3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(1,1,1)(2,1,1)(3,1,1)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0}\times\omega](\varepsilon_0^{\varepsilon_0}\times\omega)=\psi(I_\omega\times\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0}\times\omega)=\psi(I_\omega\times\Omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+1})=\psi(I_{\omega^2})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+2})=\psi(I_{\omega^3})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}](\varepsilon_0^{\varepsilon_0+\omega})=\psi(I_{\omega^\omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega})=\psi(I_{\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0)=\psi(I_{\Omega_{\omega}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^2)=\psi(I_{\Omega_{\omega^2}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^\omega)=\psi(I_{\Omega_{\Omega}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0}](\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0})=\psi(I_{\psi_{\Omega_{I+1}}(0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^2))=\psi(I_{\Omega_{I+\omega^2}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0}](\psi_Z(\varepsilon_0^3))=\psi(I_{\Omega_{I+\omega^3}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0}](\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega))=\psi(I_{\Omega_{I+\Omega}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0},\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega\times\omega)](\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega\times\omega))=\psi(I_I)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,1,0)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\varepsilon_0})=\psi(I_{I_\omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}\times2+\varepsilon_0^{\varepsilon_0})=\psi(I_{I_{I_\omega}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}\times\omega](\varepsilon_0^{\varepsilon_0+\omega}\times\omega)=\psi(\psi_{I(1,0)}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,0,0)\end{align}</nowiki> <nowiki>\begin{align}s\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}\times\omega)=\psi(\psi_{I(1,0)}(0)\times\Omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega+1})=\psi(\psi_{I(1,0)}(\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega+2})=\psi(\psi_{I(1,0)}(\omega^2))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega+3})=\psi(\psi_{I(1,0)}(\omega^3))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(2,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega\times2})=\psi(\psi_{I(1,0)}(\omega^\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega\times2})=\psi(\psi_{I(1,0)}(\Omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega\times2}\times2)=\psi(\psi_{I(1,0)}(\psi_{I(1,0)}(\psi_{I(1,0)}(\Omega))))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)=\psi(I(1,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega+\varepsilon_0^\omega)=\psi(I(1,0)+\Omega_{\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)(1,1,1)(2,1,1)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega,\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega+\varepsilon_0^\omega\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega+\varepsilon_0^\omega\times\omega)=\psi(I(1,0)+\psi_I(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2+1},\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega))=\psi(I(1,0)\times2)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,1,0)(3,2,1)(4,2,1)(5,2,1)(4,2,1)(5,2,0)(4,2,1)(5,2,0)(4,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2+1},\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2+1},\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)))=\psi(I(1,0)\times3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,1,0)(3,2,1)(4,2,1)(5,2,1)(4,2,1)(5,2,0)(4,2,1)(5,2,0)(4,2,0)(5,3,1)(6,3,1)(7,3,1)(6,3,1)(7,3,0)(6,3,1)(7,3,0)(6,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2+1}](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega))=\psi(I(1,0)\times\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega\times3}\times\omega)=\psi(I(1,0)^2)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega\times3}\times\omega)=\psi(I(1,0)^3)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega^2}](\varepsilon_0^{\varepsilon_0+\omega^2})=\psi(I(1,0)^\omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(3,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0+\omega^2})=\psi(I(1,0)^\Omega)=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega^2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega^2}\times\omega)=\psi(I(1,0)^{I(1,0)})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0+\omega^\omega}\times\omega](\varepsilon_0^{\varepsilon_0+\omega^\omega}\times\omega)=\psi(I(1,0)^{I(1,0)^{I(1,0)}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\varepsilon_0^{\varepsilon_0\times2})=\psi(\psi_{\Omega_{I(1,0)+1}}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\zeta_0)=\psi(\Omega_{I(1,0)+1})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,0)(5,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0))=\psi(\Omega_{I(1,0)+\omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,0)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^\omega))=\psi(\Omega_{I(1,0)+\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^\omega\times2))=\psi(\Omega_{\Omega_{I(1,0)+1}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^\omega\times3))=\psi(\Omega_{\Omega_{\Omega_{I(1,0)+1}}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(4,2,1)(5,2,1)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2},\psi_Z[\varepsilon_0^\omega\times\omega](\varepsilon_0^\omega\times\omega)](\psi_Z[\varepsilon_0^\omega\times\omega](\varepsilon_0^\omega\times\omega))=\psi(\psi_{I_{I(1,0)+1}}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^{\omega+1}))=\psi(\psi_{I_{I(1,0)+1}}(\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^{\omega+2}))=\psi(\psi_{I_{I(1,0)+1}}(\omega^2))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2},\psi_Z[\varepsilon_0^{\omega\times2}\times\omega](\varepsilon_0^{\omega\times2}\times\omega)](\psi_Z[\varepsilon_0^{\omega\times2}\times\omega](\varepsilon_0^{\omega\times2}\times\omega))=\psi(I_{I(1,0)+1})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^{\varepsilon_0}))=\psi(I_{I(1,0)+\omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^{\varepsilon_0+\omega}))=\psi(I_{I(1,0)+\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2},\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\omega\times2})\times\omega](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0^{\omega\times2})\times\omega)=\psi(I_{I_{I(1,0)+1}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2},\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}\times2+\varepsilon_0^{\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega}\times2+\varepsilon_0^{\omega\times2})\times\omega](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}\times2+\varepsilon_0^{\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega}\times2+\varepsilon_0^{\omega\times2})\times\omega)=\psi(I_{I_{I_{I(1,0)+1}}})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(4,2,1)(5,2,1)(6,2,0)(5,2,1)(6,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2},\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}\times\omega+\varepsilon_0^{\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega}\times\omega+\varepsilon_0^{\omega\times2})\times\omega](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega}\times\omega+\varepsilon_0^{\omega\times2}](\varepsilon_0^{\varepsilon_0+\omega}\times\omega+\varepsilon_0^{\omega\times2})\times\omega)=\psi(\psi_{I(1,1)}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z(\varepsilon_0^{\varepsilon_0+\omega+1}))=\psi(\psi_{I(1,1)}(\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(5,2,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega))=\psi(I(1,1))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(5,2,1)(6,2,0)(5,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)))=\psi(I(1,2))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(7,3,1)(8,3,1)(9,3,1)(8,3,1)(9,3,0)(8,3,1)(9,3,0)(8,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z[\varepsilon_0^{\varepsilon_0\times2}](\psi_Z[\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0+\omega\times2}\times\omega)))))=\psi(I(1,3))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(5,2,1)(6,2,0)(7,3,1)(8,3,1)(9,3,1)(8,3,1)(9,3,0)(10,4,1)(11,4,1)(12,4,1)(11,4,1)(12,4,0)(11,4,1)(12,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2})=\psi(I(1,\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+1})=\psi(I(1,\omega^2))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+2})=\psi(I(1,\omega^3))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+\omega})=\psi(I(1,\Omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+\omega}+\varepsilon_0^{\varepsilon_0\times2})=\psi(I(1,I_\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+\omega}\times2)=\psi(I(1,I(1,\Omega)))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+\omega}\times3)=\psi(I(1,I(1,I(1,\Omega))))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2+\omega}\times\omega](\varepsilon_0^{\varepsilon_0\times2+\omega}\times\omega)=\psi(\psi_{I(2,0)}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+\omega+1})=\psi(\psi_{I(2,0)}(\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times2+\omega\times2})=\psi(\psi_{I(2,0)}(\Omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times2+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0\times2+\omega\times2}\times\omega)=\psi(I(2,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times3})=\psi(I(2,\omega))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times3+\omega}\times\omega](\varepsilon_0^{\varepsilon_0\times3+\omega}\times\omega)=\psi(\psi_{I(3,0)}(0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times3+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0\times3+\omega\times2}\times\omega)=\psi(I(3,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times4+\omega\times2}\times\omega](\varepsilon_0^{\varepsilon_0\times4+\omega\times2}\times\omega)=\psi(I(4,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(2,1,1)(3,1,0)(2,0,0)\\&\large\color{blue}{\psi_Z[\varepsilon_0^{\varepsilon_0\times\omega}](\varepsilon_0^{\varepsilon_0\times\omega})=\psi(I(\omega,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)=\mathrm{MBO}}\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega})=\psi(I(\Omega,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0)=\psi(I(\Omega_\omega,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{2})=\psi(I(\Omega_{\omega^2},0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\omega}](\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\omega})=\psi(I(\Omega_{\omega^\omega},0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\omega})=\psi(I(\Omega_{\Omega},0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)\\&\psi_Z[\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\omega}\times\omega](\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\omega}\times\omega)=\psi(I(\psi_I(0),0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\omega+1})=\psi(I(\psi_I(\omega),0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)(2,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\varepsilon_0})=\psi(I(I_\omega,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\varepsilon_0+\omega})=\psi(I(I_\Omega,0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}+\varepsilon_0^{\varepsilon_0\times2})=\psi(I(I(1,\omega),0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}\times2+\varepsilon_0^{\varepsilon_0\times2})=\psi(I(I(I(1,\omega),0),0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)\\&\psi_Z(\varepsilon_0^{\varepsilon_0\times\omega}\times3+\varepsilon_0^{\varepsilon_0\times2})=\psi(I(I(I(I(1,\omega),0),0),0))=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)\\&\LARGE\color{purple}{\psi_Z[\varepsilon_0^{\varepsilon_0\times\omega}\times\omega](\varepsilon_0^{\varepsilon_0\times\omega}\times\omega)=\psi(\psi_{I(1,0,0)}(0))=\psi((2~~1-)^{1,0})=(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)=\mathrm{TBO}}\end{align}</nowiki> __静态重定向__ [[分类:分析]]
返回
fffz分析Part4:JO~TBO
。
查看“︁fffz分析Part4:JO~TBO”︁的源代码
来自Googology Wiki