打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁fffz分析Part3:BO~BIO”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
fffz分析Part3:BO~BIO
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本词条展示[[Fake Fake Fake Zeta|fffz]]分析的第<math>3</math>部分 \begin{align}s\\&\psi_Z(\varepsilon_0)=\psi(\Omega_\omega)=(0,0,0)(1,1,1)\\&\psi_Z(\varepsilon_0+\omega)=\psi(\Omega_\omega+1)=(0,0,0)(1,1,1)(1,1,0)\\&\psi_Z(\varepsilon_0+\omega^2)=\psi(\Omega_\omega+\Omega)=(0,0,0)(1,1,1)(1,1,0)(2,1,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_0\times2)=\psi(\Omega_\omega+\psi_1(0))=(0,0,0)(1,1,1)(1,1,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_0\times3)=\psi(\Omega_\omega+\psi_1(0)\times2)=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(1,1,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times2,\varepsilon_0\times\omega](\varepsilon_0\times\omega)=\psi(\Omega_\omega+\psi_1(0)\times\omega)=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(2,0,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_0\times\omega)=\psi(\Omega_\omega+\psi_1(0)\times\Omega)=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(2,1,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_0^2)=\psi(\Omega_\omega+\psi_1(0)^2)=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(2,1,0)(3,2,0)\\&\psi_Z[\varepsilon_0\times2,\varepsilon_0^\omega](\varepsilon_0^\omega)=\psi(\Omega_\omega+\psi_1(0)^\omega)=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(2,1,0)(3,2,0)(3,0,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_0^\omega)=\psi(\Omega_\omega+\psi_1(0)^\Omega)=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(2,1,0)(3,2,0)(3,1,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_1)=\psi(\Omega_\omega+\psi_1(1))=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times2,\varepsilon_\omega](\varepsilon_\omega)=\psi(\Omega_\omega+\psi_1(\omega))=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(3,0,0)\\&\psi_Z[\varepsilon_0\times2](\varepsilon_\omega)=\psi(\Omega_\omega+\psi_1(\Omega))=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(3,1,0)\\&\psi_Z[\varepsilon_0\times2](\zeta_0)=\psi(\Omega_\omega+\psi_1(\Omega_2))=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z[\varepsilon_0](\varepsilon_0))=\psi(\Omega_\omega+\psi_1(\psi_2(0)))=(0,0,0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0))=\psi(\Omega_\omega+\psi_1(\Omega_\omega))=(0,0,0)(1,1,1)(1,1,0)(2,2,1)\\&\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0)+\omega)=\psi(\Omega_\omega+\psi_1(\Omega_\omega)+1)\\&\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0)+\varepsilon_0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega)+\psi_1(0))=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(1,1,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0)\times2)=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times2)=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(1,1,0)(2,2,1)\\&\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0+1))=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\omega)=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,0,0)\\&\psi_Z[\varepsilon_0\times2,\psi_Z[\varepsilon_0+\omega](\varepsilon_0+\omega)](\psi_Z[\varepsilon_0+\omega](\varepsilon_0+\omega))=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\omega^\omega)=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,0,0)(3,0,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z[\varepsilon_0+\omega](\varepsilon_0+\omega))=\psi(\Omega_\omega+\psi_1(\Omega_\omega+1))=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z[\varepsilon_0+\omega](\varepsilon_0\times2))=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi(0)))=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,0,0)(4,1,0)\\&\psi_Z[\varepsilon_0\times2,\psi_Z(\varepsilon_0+\omega)](\psi_Z(\varepsilon_0+\omega))=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\Omega))=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0+\omega))=\psi(\Omega_\omega+\Omega_2)=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0\times2](\psi_Z[\varepsilon_0\times2](\psi_Z(\varepsilon_0+\omega)))=\psi(\Omega_\omega+\Omega_3)=(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0)\\&\psi_Z(\varepsilon_0\times2)=\psi(\Omega_\omega\times2)=(0,0,0)(1,1,1)(1,1,1)\\&\psi_Z(\varepsilon_0\times3)=\psi(\Omega_\omega\times3)=(0,0,0)(1,1,1)(1,1,1)(1,1,1)\\&\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega)=\psi(\Omega_\omega\times\omega)=(0,0,0)(1,1,1)(2,0,0)\\&\psi_Z(\varepsilon_0\times\omega)=\psi(\Omega_\omega\times\Omega)=(0,0,0)(1,1,1)(2,1,0)\end{align} \begin{align}s\\&\psi_Z(\varepsilon_0\times\omega+\omega)=\psi(\Omega_\omega\times\Omega+1)=(0,0,0)(1,1,1)(2,1,0)(1,1,0)\\&\psi_Z(\varepsilon_0\times\omega+\omega^2)=\psi(\Omega_\omega\times\Omega+\Omega)=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)=\psi(\Omega_\omega\times\Omega+\psi_1(0))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\varepsilon_1)=\psi(\Omega_\omega\times\Omega+\psi_1(1))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\varepsilon_2)=\psi(\Omega_\omega\times\Omega+\psi_1(2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,0)(2,2,0)(2,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\varepsilon_\omega)=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,0)(3,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\zeta_0)=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0](\zeta_0))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_3))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,0)(3,3,0)(4,3,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z(\varepsilon_0))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z(\varepsilon_0+\omega))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega+\Omega_2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(2,2,0)(3,3,0)(4,3,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times2](\varepsilon_0\times2))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(2,2,1)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times3](\varepsilon_0\times3))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times3))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(2,2,1)(2,2,1)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0,\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\omega))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,0,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega))=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega+\omega))=\psi(\Omega_\omega\times\Omega+\Omega_2)=(0,0,0)(1,1,1)(2,1,0)(1,1,1)(2,1,1)(3,1,0)(2,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega\times2))=\psi(\Omega_\omega\times(\Omega+1))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega\times3))=\psi(\Omega_\omega\times(\Omega+2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,1)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega^2))=\psi(\Omega_\omega\times(\Omega\times2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega^3))=\psi(\Omega_\omega\times(\Omega\times3))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega^\omega))=\psi(\Omega_\omega\times\Omega^2)=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega^{\omega^\omega}))=\psi(\Omega_\omega\times\Omega^{\Omega^2})=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,1,0)(4,1,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_1))=\psi(\Omega_\omega\times\psi_1(0))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_2))=\psi(\Omega_\omega\times\psi_1(1))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0)(4,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\zeta_0))=\psi(\Omega_\omega\times\psi_1(\Omega_2))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0)(5,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\psi_Z(\varepsilon_0)))=\psi(\Omega_\omega\times\psi_1(\Omega_\omega))=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z(\varepsilon_0\times\omega))=\psi(\Omega_\omega\times\Omega_2)=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\varepsilon_0\times\omega))=\psi(\Omega_\omega\times\Omega_3)=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,0)\\&\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega+\varepsilon_0](\varepsilon_0\times\omega)))=\psi(\Omega_\omega\times\Omega_4)=(0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,0)(3,3,0)(4,4,1)(5,4,0)\\&\psi_Z(\varepsilon_0\times\omega+\varepsilon_0)=\psi(\Omega_\omega^2)=(0,0,0)(1,1,1)(2,1,0)(1,1,1)\end{align} <nowiki>\begin{align}s\\&\psi_Z(\varepsilon_0\times\omega^2+\varepsilon_0)=\psi(\Omega_\omega^3)=(0,0,0)(1,1,1)(2,1,0)(2,1,0)(1,1,1)\\&\psi_Z(\varepsilon_0\times\omega^3+\varepsilon_0)=\psi(\Omega_\omega^4)=(0,0,0)(1,1,1)(2,1,0)(2,1,0)(2,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0\times\omega^\omega](\varepsilon_0\times\omega^\omega)=\psi(\Omega_\omega^\omega)=(0,0,0)(1,1,1)(2,1,0)(3,0,0)\\&\psi_Z(\varepsilon_0\times\omega^\omega+\varepsilon_0)=\psi(\Omega_\omega^{\Omega_\omega})=(0,0,0)(1,1,1)(2,1,0)(3,1,0)(1,1,1)\\&\psi_Z(\varepsilon_0\times\omega^{\omega^\omega}+\varepsilon_0)=\psi(\Omega_\omega^{\Omega_\omega^{\Omega_\omega}})=(0,0,0)(1,1,1)(2,1,0)(3,1,0)(4,1,0)(1,1,1)\\&\large{\color{red}{\psi_Z[\varepsilon_0^2](\varepsilon_0^2)=\psi(\psi_\omega(0))=\mathrm{TFBO}}} [2]\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^2+\omega)=\psi(\psi_\omega(0)+1)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^2+\omega^\omega)=\psi(\psi_\omega(0)+\Omega^\Omega)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,0)(2,1,0)\\&\psi_Z[\varepsilon_0^2,\varepsilon_0^2+\varepsilon_0](\varepsilon_0^2+\varepsilon_0)=\psi(\psi_\omega(0)+\psi_1(0))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,0)(2,2,0)\\&\psi_Z[\varepsilon_0^2,\varepsilon_0^2+\varepsilon_0](\varepsilon_1)=\psi(\psi_\omega(0)+\psi_1(1))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,0)(2,2,0)(2,2,0)\\&\psi_Z[\varepsilon_0^2,\varepsilon_0^2+\varepsilon_0](\psi_Z(\varepsilon_0))=\psi(\psi_\omega(0)+\psi_1(\Omega_\omega))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,0)(2,2,1)\\&\psi_Z[\varepsilon_0^2,\varepsilon_0^2+\varepsilon_0](\psi_Z[\varepsilon_0\times\omega](\varepsilon_0\times\omega+\omega))=\psi(\psi_\omega(0)+\Omega_2)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,0)(2,2,1)(3,2,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^2+\varepsilon_0)=\psi(\psi_\omega(0)+\Omega_\omega)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(1,1,1)\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^2\times\omega+\varepsilon_0)=\psi(\psi_\omega(0)\times\Omega_\omega)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(2,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^3)=\psi(\psi_\omega(0)^2)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(2,1,0)(3,2,0)\\&\psi_Z[\varepsilon_0^2,\varepsilon_0^\omega](\varepsilon_0^\omega)=\psi(\psi_\omega(0)^\omega)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(3,0,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^\omega)=\psi(\psi_\omega(0)^\Omega)=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_0^{\varepsilon_0})=\psi(\psi_\omega(0)^{\psi_\omega(0)})=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)(4,2,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_1)=\psi(\psi_\omega(1))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_2)=\psi(\psi_\omega(2))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_\omega)=\psi(\psi_\omega(\Omega))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,1,0)\\&\psi_Z[\varepsilon_0^2](\varepsilon_\omega\times\omega+\varepsilon_0)=\psi(\psi_\omega(\Omega_\omega))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0^2](\varepsilon_{\varepsilon_0})=\psi(\psi_\omega(\psi_\omega(0)))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,1,0)(5,2,0)\\&\psi_Z[\varepsilon_0^2](\zeta_0)=\psi(\Omega_{\omega+1})=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)\\&\psi_Z[\varepsilon_0^2](\psi_Z(\omega^{\omega}))=\psi(\Omega_{\omega+1}^{\Omega_{\omega+1}})=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,2,0)\\&\psi_Z[\varepsilon_0^2](\psi_Z[\varepsilon_0](\varepsilon_0))=\psi(\psi_{\omega+1}(0))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)\\&\psi_Z[\varepsilon_0^2](\psi_Z[\varepsilon_0](\zeta_0))=\psi(\Omega_{\omega+2})=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)(5,3,0)\\&\psi_Z[\varepsilon_0^2](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0)))=\psi(\psi_{\omega+2}(0))=(0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)(5,4,0)\\&\psi_Z[\varepsilon_0^2](\psi_Z(\varepsilon_0))=\psi(\Omega_{\omega\times2})=(0,0,0)(1,1,1)(2,1,0)(3,2,1)\\&\psi_Z[\varepsilon_0^2](\psi_Z[\varepsilon_0^2](\psi_Z(\varepsilon_0)))=\psi(\Omega_{\omega\times3})=(0,0,0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,3,1)\\&\psi_Z(\varepsilon_0^2)=\psi(\Omega_{\omega^2})=(0,0,0)(1,1,1)(2,1,1)\end{align}</nowiki> <nowiki>\begin{align}s\\&\psi_Z(\varepsilon_0^2+\omega)=\psi(\Omega_{\omega^2}+1)=(0,0,0)(1,1,1)(2,1,1)(1,1,0)\\&\psi_Z[\varepsilon_0^2+\varepsilon_0](\varepsilon_0^2+\varepsilon_0)=\psi(\Omega_{\omega^2}+\psi_1(0))=(0,0,0)(1,1,1)(2,1,1)(1,1,0)(2,2,0)\\&\psi_Z(\varepsilon_0^2+\varepsilon_0)=\psi(\Omega_{\omega^2}+\Omega_\omega)=(0,0,0)(1,1,1)(2,1,1)(1,1,1)\\&\psi_Z(\varepsilon_0^2+\varepsilon_0\times\omega+\varepsilon_0)=\psi(\Omega_{\omega^2}+\Omega_\omega^2)=(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0^2\times2](\varepsilon_0^2\times2)=\psi(\Omega_{\omega^2}+\psi_\omega(0))=(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,0)(3,2,1)\\&\psi_Z(\varepsilon_0^2\times2)=\psi(\Omega_{\omega^2}\times2)=(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^2\times3)=\psi(\Omega_{\omega^2}\times3)=(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)(1,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^2\times\omega](\varepsilon_0^2\times\omega)=\psi(\Omega_{\omega^2}\times\omega)=(0,0,0)(1,1,1)(2,1,1)(2,0,0)\\&\psi_Z(\varepsilon_0^2\times\omega)=\psi(\Omega_{\omega^2}\times\Omega)=(0,0,0)(1,1,1)(2,1,1)(2,1,0)\\&\psi_Z(\varepsilon_0^2\times\omega+\varepsilon_0)=\psi(\Omega_{\omega^2}\times\Omega_\omega)=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\varepsilon_0^2\times\omega+\varepsilon_0^2)=\psi(\Omega_{\omega^2}\times\Omega_{\omega}+\Omega_\omega)=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(1,1,1)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\varepsilon_0^3)=\psi(\Omega_{\omega^2}\times\Omega_{\omega}+\psi_\omega(0))=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,0)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\varepsilon_1)=\psi(\Omega_{\omega^2}\times\Omega_{\omega}+\psi_\omega(1))=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\varepsilon_2)=\psi(\Omega_{\omega^2}\times\Omega_{\omega}+\psi_\omega(2))=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)(3,2,0)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\zeta_0)=\psi(\Omega_{\omega^2}\times\Omega_{\omega}+\psi_\omega(\Omega_2))=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\psi_Z(\varepsilon_0))=\psi(\Omega_{\omega^2}\times\Omega_{\omega}+\psi_\omega(\Omega_\omega))=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,1)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\varepsilon_0^2\times\omega+\varepsilon_0^2))=\psi(\Omega_{\omega^2}\times\Omega_{\omega\times2})=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,1)(4,2,1)(4,2,0)(3,2,1)\\&\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\psi_Z[\varepsilon_0^2\times\omega+\varepsilon_0^2](\varepsilon_0^2\times\omega+\varepsilon_0^2)))=\psi(\Omega_{\omega^2}\times\Omega_{\omega\times3})=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,0)(3,2,1)(4,2,1)(4,2,0)(3,2,1)(4,2,0)(5,3,1)(6,3,1)(6,3,0)(5,3,1)\\&\psi_Z(\varepsilon_0^2\times\omega+\varepsilon_0^2)=\psi(\Omega_{\omega^2}^2)=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^2\times\omega^2+\varepsilon_0^2)=\psi(\Omega_{\omega^2}^3)=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(2,1,0)(1,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^2\times\omega^\omega+\varepsilon_0^2](\varepsilon_0^2\times\omega^\omega+\varepsilon_0^2)=\psi(\Omega_{\omega^2}^\omega)=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(3,0,0)\\&\psi_Z(\varepsilon_0^2\times\omega^\omega+\varepsilon_0^2)=\psi(\Omega_{\omega^2}^{\Omega_{\omega^2}})=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(3,1,0)(1,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^3](\varepsilon_0^3)=\psi(\psi_{\omega^2}(0))=(0,0,0)(1,1,1)(2,1,1)(2,1,0)(3,2,0)\\&\psi_Z(\varepsilon_0^3)=\psi(\Omega_{\omega^3})=(0,0,0)(1,1,1)(2,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^3\times\omega+\varepsilon_0^3)=\psi(\Omega_{\omega^3}^2)=(0,0,0)(1,1,1)(2,1,1)(2,1,1)(2,1,0)(1,1,1)(2,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^4](\varepsilon_0^4)=\psi(\psi_{\omega^3}(0))=(0,0,0)(1,1,1)(2,1,1)(2,1,1)(2,1,0)(3,2,0)\\&\psi_Z(\varepsilon_0^4)=\psi(\Omega_{\omega^4})=(0,0,0)(1,1,1)(2,1,1)(2,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^5)=\psi(\Omega_{\omega^5})=(0,0,0)(1,1,1)(2,1,1)(2,1,1)(2,1,1)(2,1,1)\\&\psi_Z(\varepsilon_0^6)=\psi(\Omega_{\omega^6})=(0,0,0)(1,1,1)(2,1,1)(2,1,1)(2,1,1)(2,1,1)(2,1,1)\\&\psi_Z[\varepsilon_0^\omega](\varepsilon_0^\omega)=\psi(\Omega_{\omega^\omega})=(0,0,0)(1,1,1)(2,1,1)(3,0,0)\\&\psi_Z[\varepsilon_0^\omega](\varepsilon_0^{\omega^\omega})=\psi(\Omega_{\omega^{\omega^\omega}})=(0,0,0)(1,1,1)(2,1,1)(3,0,0)(4,0,0)\\&\psi_Z[\varepsilon_0^\omega](\varepsilon_0^{\varepsilon_0})=\psi(\Omega_{\psi(0)})=(0,0,0)(1,1,1)(2,1,1)(3,0,0)(4,1,0)\\&\psi_Z[\varepsilon_0^\omega](\psi_Z(\varepsilon_0))=\psi(\Omega_{\psi(\Omega_\omega)})=(0,0,0)(1,1,1)(2,1,1)(3,0,0)(4,1,1)\\&\psi_Z[\varepsilon_0^\omega](\psi_Z(\varepsilon_0^2))=\psi(\Omega_{\psi(\Omega_{\omega^2})})=(0,0,0)(1,1,1)(2,1,1)(3,0,0)(4,1,1)(5,1,1)\\&\psi_Z[\varepsilon_0^\omega](\psi_Z[\varepsilon_0^\omega](\psi_Z(\varepsilon_0)))=\psi(\Omega_{\psi(\Omega_{\psi(\Omega_\omega)})})=(0,0,0)(1,1,1)(2,1,1)(3,0,0)(4,1,1)(5,1,1)(6,0,0)(7,1,1)\\&\LARGE\color{purple}{\psi_Z(\varepsilon_0^\omega)=\psi(\Omega_{\Omega})=(0,0,0)(1,1,1)(2,1,1)(3,1,0)=\mathrm{BIO}}\end{align}</nowiki> [[分类:分析]]
返回
fffz分析Part3:BO~BIO
。
查看“︁fffz分析Part3:BO~BIO”︁的源代码
来自Googology Wiki