打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁SSS 分析”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
SSS 分析
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目展示 SSS(单行 [[BHM]])分析。 === Part 1 === * <math>0=1</math> * <math>0,0=2</math> * <math>0,0,0=3</math> * <math>0,1=\omega</math> * <math>0,1,0=\omega+1</math> * <math>0,1,0,0=\omega+2</math> * <math>0,1,0,0,1=\omega\times2</math> * <math>0,1,0,0,1,0,0,1=\omega\times3</math> * <math>0,1,0,1=\omega^2</math> * <math>0,1,0,1,0,0,1=\omega^2+\omega</math> * <math>0,1,0,1,0,0,1,0,0,1=\omega^2+\omega\times2</math> * <math>0,1,0,1,0,0,1,0,1=\omega^2\times2</math> * <math>0,1,0,1,0,0,1,0,1,0,0,1,0,1=\omega^2\times3</math> * <math>0,1,0,1,0,1=\omega^3</math> * <math>0,1,0,1,0,1,0,1=\omega^4</math> * <math>0,1,1=\omega^\omega</math> * <math>0,1,1,0,0,1,0,1=\omega^\omega+\omega^2</math> * <math>0,1,1,0,0,1,1=\omega^\omega\times2</math> * <math>0,1,1,0,1=\omega^{\omega+1}</math> * <math>0,1,1,0,1,0,0,1,1,0,1=\omega^{\omega+1}\times2</math> * <math>0,1,1,0,1,0,1=\omega^{\omega+2}</math> * <math>0,1,1,0,1,0,1,1=\omega^{\omega\times2}</math> * <math>0,1,1,0,1,0,1,1,0,1=\omega^{\omega\times2+1}</math> * <math>0,1,1,0,1,0,1,1,0,1,0,1,1=\omega^{\omega\times3}</math> * <math>0,1,1,0,1,1=\omega^{\omega^2}</math> * <math>0,1,1,0,1,1,0,1=\omega^{\omega^2+1}</math> * <math>0,1,1,0,1,1,0,1,0,1,1,0,1,1=\omega^{\omega^2\times2}</math> * <math>0,1,1,0,1,1,0,1,1=\omega^{\omega^3}</math> * <math>0,1,1,1=\omega^{\omega^\omega}</math> * <math>0,1,1,1,1=\omega^{\omega^{\omega^\omega}}</math> * <math>0,1,1,2=\psi(0)</math> === Part 2 === * <math>0,1,1,2,0,0,1=\psi(0)+\omega</math> * <math>0,1,1,2,0,0,1,0,1=\psi(0)+\omega^2</math> * <math>0,1,1,2,0,0,1,1=\psi(0)+\omega^\omega</math> * <math>0,1,1,2,0,0,1,1,2=\psi(0)\times2</math> * <math>0,1,1,2,0,1=\psi(0)\times\omega</math> * <math>0,1,1,2,0,1,0,0,1,1,2,0,1=\psi(0)\times\omega\times2</math> * <math>0,1,1,2,0,1,0,1=\psi(0)\times\omega^2</math> * <math>0,1,1,2,0,1,0,1,1=\psi(0)\times\omega^\omega</math> * <math>0,1,1,2,0,1,0,1,1,2=\psi(0)^2</math> * <math>0,1,1,2,0,1,0,1,1,2,0,1=\psi(0)^2\times\omega</math> * <math>0,1,1,2,0,1,0,1,1,2,0,1,0,1,1,2=\psi(0)^3</math> * <math>0,1,1,2,0,1,1=\psi(0)^\omega</math> * <math>0,1,1,2,0,1,1,0,1,0,1,1,2=\psi(0)^{\omega+1}</math> * <math>0,1,1,2,0,1,1,0,1,0,1,1,2,0,1,1=\psi(0)^{\omega\times2}</math> * <math>0,1,1,2,0,1,1,0,1,1=\psi(0)^{\omega^2}</math> * <math>0,1,1,2,0,1,1,0,1,1,1=\psi(0)^{\omega^\omega}</math> * <math>0,1,1,2,0,1,1,0,1,1,2=\psi(0)^{\psi(0)}</math> * <math>0,1,1,2,0,1,1,1=\psi(0)^{\psi(0)^\omega}</math> * <math>0,1,1,2,0,1,1,2=\psi(1)</math> * <math>0,1,1,2,0,1,1,2,0,1,1,2=\psi(2)</math> * <math>0,1,1,2,1=\psi(\omega)</math> * <math>0,1,1,2,1,0,1=\psi(\omega)\times\omega</math> * <math>0,1,1,2,1,0,1,0,1,1,2=\psi(\omega)\times\psi(0)</math> * <math>0,1,1,2,1,0,1,0,1,1,2,0,1,1,2=\psi(\omega)\times\psi(1)</math> * <math>0,1,1,2,1,0,1,0,1,1,2,1=\psi(\omega)^2</math> * <math>0,1,1,2,1,0,1,0,1,1,2,1,0,1,0,1,1,2,1=\psi(\omega)^3</math> * <math>0,1,1,2,1,0,1,1=\psi(\omega)^\omega</math> * <math>0,1,1,2,1,0,1,1,0,1,1,2=\psi(\omega)^{\psi(\omega)}</math> * <math>0,1,1,2,1,0,1,1,1=\psi(\omega)^{\psi(\omega)^{\omega}}</math> * <math>0,1,1,2,1,0,1,1,2=\psi(\omega+1)</math> * <math>0,1,1,2,1,0,1,1,2,0,1,1,2=\psi(\omega+2)</math> * <math>0,1,1,2,1,0,1,1,2,0,1,1,2,1=\psi(\omega\times2)</math> * <math>0,1,1,2,1,0,1,1,2,1=\psi(\omega^2)</math> * <math>0,1,1,2,1,0,1,1,2,1,0,1,1,2=\psi(\omega^2+1)</math> * <math>0,1,1,2,1,0,1,1,2,1,0,1,1,2,0,1,1,2,1=\psi(\omega^2+\omega)</math> * <math>0,1,1,2,1,0,1,1,2,1,0,1,1,2,0,1,1,2,1,0,1,1,2,1=\psi(\omega^2\times2)</math> * <math>0,1,1,2,1,0,1,1,2,1,0,1,1,2,1=\psi(\omega^3)</math> * <math>0,1,1,2,1,1=\psi(\omega^\omega)</math> * <math>0,1,1,2,1,1,1=\psi(\omega^{\omega^\omega})</math> * <math>0,1,1,2,1,1,2=\psi(\psi(0))</math> * <math>0,1,1,2,1,1,2,0,1=\psi(\psi(0))\times\omega</math> * <math>0,1,1,2,1,1,2,0,1,1,2=\psi(\psi(0)+1)</math> * <math>0,1,1,2,1,1,2,0,1,1,2,0,1,1,2,1,1,2=\psi(\psi(0)\times2)</math> * <math>0,1,1,2,1,1,2,0,1,1,2,1=\psi(\psi(0)\times\omega)</math> * <math>0,1,1,2,1,1,2,0,1,1,2,1,1=\psi(\psi(0)^\omega)</math> * <math>0,1,1,2,1,1,2,0,1,1,2,1,1,2=\psi(\psi(1))</math> * <math>0,1,1,2,1,1,2,1=\psi(\psi(\omega))</math> * <math>0,1,1,2,1,1,2,1,0,1,1,2,1,1,2,1=\psi(\psi(\omega^2))</math> * <math>0,1,1,2,1,1,2,1,1=\psi(\psi(\omega^\omega))</math> * <math>0,1,1,2,1,1,2,1,1,2=\psi(\psi(\psi(0)))</math> * <math>0,1,1,2,1,2=\psi(\Omega)</math> === Part 3 === * <math>0,1,1,2,1,2,0,1,1,2=\psi(\Omega+1)</math> * <math>0,1,1,2,1,2,0,1,1,2,0,1,1,2,1=\psi(\Omega+\omega)</math> * <math>0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,1,2=\psi(\Omega+\psi(0))</math> * <math>0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,1,2,1,1,2=\psi(\Omega+\psi(\psi(0)))</math> * <math>0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,2=\psi(\Omega+\psi(\Omega))</math> * <math>0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,2,0,1,1,2=\psi(\Omega+\psi(\Omega)+1)</math> * <math>0,1,1,2,1,2,0,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\omega)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2=\psi(\Omega+\psi(\Omega)\times\omega+1)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,0,1,1,2,1,2,0,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\omega\times2)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\omega^2)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,1=\psi(\Omega+\psi(\Omega)\times\omega^\omega)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,1,2=\psi(\Omega+\psi(\Omega)\times\psi(0))</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\psi(\omega))</math> * <math>0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,2=\psi(\Omega+\psi(\Omega)^2)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,1=\psi(\Omega+\psi(\Omega)^\omega)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,1,2=\psi(\Omega+\psi(\Omega+1))</math> * <math>0,1,1,2,1,2,0,1,1,2,1,1,2,1=\psi(\Omega+\psi(\Omega+\psi(\Omega)\times\omega))</math> * <math>0,1,1,2,1,2,0,1,1,2,1,1,2,1,1=\psi(\Omega+\psi(\Omega+\psi(\Omega)^\omega))</math> * <math>0,1,1,2,1,2,0,1,1,2,1,1,2,1,1,2=\psi(\Omega+\psi(\Omega+\psi(\Omega+1)))</math> * <math>0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega\times2)</math> * <math>0,1,1,2,1,2,0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega\times3)</math> * <math>0,1,1,2,1,2,1=\psi(\Omega\times\omega)</math> * <math>0,1,1,2,1,2,1,0,1,1,2,1,2=\psi(\Omega\times\omega+\Omega)</math> * <math>0,1,1,2,1,2,1,0,1,1,2,1,2,0,1,1,2,1,2,1=\psi(\Omega\times\omega\times2)</math> * <math>0,1,1,2,1,2,1,0,1,1,2,1,2,1=\psi(\Omega\times\omega^2)</math> * <math>0,1,1,2,1,2,1,1=\psi(\Omega\times\omega^\omega)</math> * <math>0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(0))</math> * <math>0,1,1,2,1,2,1,1,2,0,1,1,2,1,2=\psi(\Omega\times\psi(0)+\Omega)</math> * <math>0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1=\psi(\Omega\times\psi(0)\times\omega)</math> * <math>0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,0,1,1,2,1,2,1,1=\psi(\Omega\times\psi(0)\times\omega^2)</math> * <math>0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(0)^2)</math> * <math>0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,1=\psi(\Omega\times\psi(0)^\omega)</math> * <math>0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(1))</math> * <math>0,1,1,2,1,2,1,1,2,1=\psi(\Omega\times\psi(\omega))</math> * <math>0,1,1,2,1,2,1,1,2,1,1=\psi(\Omega\times\psi(\omega^\omega))</math> * <math>0,1,1,2,1,2,1,1,2,1,1,2=\psi(\Omega\times\psi(\psi(0)))</math> * <math>0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega\times\psi(\Omega))</math> * <math>0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega\times\psi(\Omega)+\Omega)</math> * <math>0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1=\psi(\Omega\times\psi(\Omega)\times\omega)</math> * <math>0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(\Omega+1))</math> * <math>0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega\times\psi(\Omega\times2))</math> * <math>0,1,1,2,1,2,1,1,2,1,2,1=\psi(\Omega\times\psi(\Omega\times\omega))</math> * <math>0,1,1,2,1,2,1,2=\psi(\Omega^2)</math> * <math>0,1,1,2,1,2,1,2,0,1,1,2,1,2=\psi(\Omega^2+\Omega)</math> * <math>0,1,1,2,1,2,1,2,0,1,1,2,1,2,1,2=\psi(\Omega^2\times2)</math> * <math>0,1,1,2,1,2,1,2,1=\psi(\Omega^2\times\omega)</math> * <math>0,1,1,2,1,2,1,2,1,1,2=\psi(\Omega^2\times\psi(0))</math> * <math>0,1,1,2,1,2,1,2,1,1,2,1,2=\psi(\Omega^2\times\psi(\Omega))</math> * <math>0,1,1,2,1,2,1,2,1,1,2,1,2,1,2=\psi(\Omega^2\times\psi(\Omega^2))</math> * <math>0,1,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2=\psi(\Omega^2\times\psi(\Omega^2\times\psi(0)))</math> * <math>0,1,1,2,1,2,1,2,1,2=\psi(\Omega^3)</math> * <math>0,1,1,2,1,2,1,2,1,2,1,2=\psi(\Omega^4)</math> * <math>0,1,1,2,2=\psi(\Omega^\omega)</math> * <math>0,1,1,2,2,0,1,1,2=\psi(\Omega^\omega+1)</math> * <math>0,1,1,2,2,0,1,1,2,1,2=\psi(\Omega^\omega+\Omega^2)</math> * <math>0,1,1,2,2,0,1,1,2,1,2,1,2=\psi(\Omega^\omega+\Omega^3)</math> * <math>0,1,1,2,2,0,1,1,2,2=\psi(\Omega^\omega\times2)</math> * <math>0,1,1,2,2,1=\psi(\Omega^\omega\times\omega)</math> * <math>0,1,1,2,2,1,1,2=\psi(\Omega^\omega\times\psi(0))</math> * <math>0,1,1,2,2,1,1,2,1,2=\psi(\Omega^\omega\times\psi(\Omega))</math> * <math>0,1,1,2,2,1,1,2,1,2,1,2=\psi(\Omega^\omega\times\psi(\Omega^2))</math> * <math>0,1,1,2,2,1,1,2,1,2,2=\psi(\Omega^\omega\times\psi(\Omega^\omega))</math> * <math>0,1,1,2,2,1,2=\psi(\Omega^{\omega+1})</math> * <math>0,1,1,2,2,1,2,1,2=\psi(\Omega^{\omega+2})</math> * <math>0,1,1,2,2,1,2,1,2,2=\psi(\Omega^{\omega\times2})</math> * <math>0,1,1,2,2,1,2,2=\psi(\Omega^{\omega^2})</math> * <math>0,1,1,2,2,2=\psi(\Omega^{\omega^\omega})</math> * <math>0,1,1,2,2,2,1,2,2=\psi(\Omega^{\omega^{\omega+1}})</math> * <math>0,1,1,2,2,3=\psi(\Omega^{\psi(0)})</math> * <math>0,1,1,2,2,3,1,2=\psi(\Omega^{\psi(0)+1})</math> * <math>0,1,1,2,2,3,1,2,1,2,2,3=\psi(\Omega^{\psi(0)\times2})</math> * <math>0,1,1,2,2,3,1,2,2=\psi(\Omega^{\psi(0)\times\omega})</math> * <math>0,1,1,2,2,3,1,2,2,2=\psi(\Omega^{\psi(0)^\omega})</math> * <math>0,1,1,2,2,3,1,2,2,3=\psi(\Omega^{\psi(1)})</math> * <math>0,1,1,2,2,3,2=\psi(\Omega^{\psi(\omega)})</math> * <math>0,1,1,2,2,3,2,2,3=\psi(\Omega^{\psi(\psi(0))})</math> * <math>0,1,1,2,2,3,2,2,3,2,2,3=\psi(\Omega^{\psi(\psi(\psi(0)))})</math> * <math>0,1,1,2,2,3,2,3=\psi(\Omega^{\psi(\Omega)})</math> * <math>0,1,1,2,2,3,2,3,2,3=\psi(\Omega^{\psi(\Omega^2)})</math> * <math>0,1,1,2,2,3,3=\psi(\Omega^{\psi(\Omega^\omega)})</math> * <math>0,1,1,2,2,3,3,3=\psi(\Omega^{\psi(\Omega^{\omega^\omega})})</math> * <math>0,1,1,2,2,3,3,4=\psi(\Omega^{\psi(\Omega^{\psi(0)})})</math> * <math>0,1,2=\psi(\Omega^\Omega)</math> === Part 4 === * <math>0,1,2,0,0,1,1=\psi(\Omega^\Omega)+\omega^2</math> * <math>0,1,2,0,0,1,1,2=\psi(\Omega^\Omega)+\psi(0)</math> * <math>0,1,2,0,0,1,2=\psi(\Omega^\Omega)\times2</math> * <math>0,1,2,0,1=\psi(\Omega^\Omega)\times\omega</math> * <math>0,1,2,0,1,0,1,1,2=\psi(\Omega^\Omega)\times\psi(0)</math> * <math>0,1,2,0,1,0,1,1,2,2,3=\psi(\Omega^\Omega)\times\psi(\Omega^{\psi(0)})</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3}=\psi(\Omega^\Omega)^2</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,0,1,1,2,3=\psi(\Omega^\Omega)^3</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1=\psi(\Omega^\Omega)^\omega</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1,0,1,0,1,1,2,3=\psi(\Omega^\Omega)^{\omega+1}</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1,0,1,0,1,1,2,3,0,1,1=\psi(\Omega^\Omega)^{\omega\times2}</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1,0,1,1=\psi(\Omega^\Omega)^{\omega^2}</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1,0,1,1,2,3=\psi(\Omega^\Omega)^{\psi(\Omega^\Omega)}</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1,1=\psi(\Omega^\Omega)^{\psi(\Omega^\Omega)^\omega}</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3,}0,1,1,2=\psi(\Omega^\Omega+1)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,0,1,1,2=\psi(\Omega^\Omega+2)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,0,1,1,2,1=\psi(\Omega^\Omega+\omega)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,0,1,1,2,1,1,2=\psi(\Omega^\Omega+\psi(0))</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,0,1,1,2,3=\psi(\Omega^\Omega+\psi(\Omega^\Omega))</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1=\psi(\Omega^\Omega+\psi(\Omega^\Omega)\times\omega)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,0,1,1,2,3=\psi(\Omega^\Omega+\psi(\Omega^\Omega)^2)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,1=\psi(\Omega^\Omega+\psi(\Omega^\Omega)^\omega)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,1,2=\psi(\Omega^\Omega+\psi(\Omega^\Omega+1))</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,1,2,1=\psi(\Omega^\Omega+\psi(\Omega^\Omega+\psi(\Omega^\Omega)\times\omega))</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,2=\psi(\Omega^\Omega+\Omega)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega^\Omega+\Omega\times2)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,2,1=\psi(\Omega^\Omega+\Omega\times\omega)</math> * <math>0,1,2,\color{green}{0,1,0,1,1,2,3},0,1,1,2,1,2,1,2=\psi(\Omega^\Omega+\Omega^2)</math> * <math>0,1,2,0,1,0,1,1,2,3,0,1,1,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)})</math> * <math>0,1,2,0,1,0,1,1,2,3,0,1,1,2,3,0,1,1,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times2)</math> * <math>0,1,2,0,1,0,1,1,2,3,1=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\omega)</math> * <math>0,1,2,0,1,0,1,1,2,3,1,0,1,1,2,3,0,1,1,2,3,1=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\omega\times2)</math> * <math>0,1,2,0,1,0,1,1,2,3,1,0,1,1,2,3,1=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\omega^2)</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\omega^\omega)</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(0))</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,0,1,1,2,3,0,1,1,2,3,1,1,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(0)^2)</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,0,1,1,2,3,1=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(0)^\omega)</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,1=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(\omega))</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,1,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(\Omega))</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,1,2,1,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(\Omega^2))</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(\Omega^\omega))</math> * <math>0,1,2,0,1,0,1,1,2,3,1,1,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(\Omega^\Omega))</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)+1})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)+2})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)\times2})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)\times\omega})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2,1,2,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)\times\omega^2})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2,1,2,2,3,4=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)^2})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)^\omega})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+1)})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2,3,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+\Omega)})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,1,2,2,3,4=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)})})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,2=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\omega)})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,2,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\psi(0))})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,2,3=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)+1}})</math> * <math>0,1,2,0,1,0,1,1,2,3,1,2,1,2,2,3,4,2,3,2,3,3,4,5=\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)\times2})})</math> * <math>0,1,2,0,1,0,1,2=\psi(\Omega^\Omega\times 2)</math> === Part 5 === * <math>0,1,2,0,1,0,1,2,0,1=\psi(\Omega^\Omega\times2)\times\omega</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1=\psi(\Omega^\Omega\times2)\times\omega^2</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1=\psi(\Omega^\Omega\times2)\times\omega^\omega</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2=\psi(\Omega^\Omega\times2)\times\psi(0)</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3=\psi(\Omega^\Omega\times2)^2</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,0,1,1,2=\psi(\Omega^\Omega\times2+1)</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,0,1,1,2,3,1,2,1,2,3=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)}\times\omega)</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)+1})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)+\omega})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2,3,4=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)\times2})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2,3,4,1,2,2=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)\times\omega})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2,3,4,1,2,2,2=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)^\omega})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2,3,4,1,2,2,3=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2+1)})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2,3,4,1,2,2,3,4=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega)})})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,1,2,3,1,2,1,2,3,1,2,1,2,2,3,4,2,3,2,3,4=\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2+\Omega^{\psi(\Omega^\Omega\times2)})})</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,2=\psi(\Omega^\Omega\times3)</math> * <math>0,1,2,0,1,0,1,2,0,1,0,1,2,0,1,0,1,2=\psi(\Omega^\Omega\times4)</math> * <math>0,1,2,0,1,1=\psi(\Omega^\Omega\times\omega)</math> * <math>0,1,2,0,1,1,0,1,0,1,2=\psi(\Omega^\Omega\times\omega+\Omega^\Omega)</math> * <math>0,1,2,0,1,1,0,1,0,1,2,0,1,1=\psi(\Omega^\Omega\times\omega\times2)</math> * <math>0,1,2,0,1,1,0,1,1=\psi(\Omega^\Omega\times\omega^2)</math> * <math>0,1,2,0,1,1,0,1,1,2=\psi(\Omega^\Omega\times\psi(0))</math> * <math>0,1,2,0,1,1,0,1,1,2,3=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega)\times\omega)</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,0,1,1,2,3,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega)^2)</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,1=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega)^\omega)</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+1))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,0,1,1,2,1=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,0,1,1,2,3,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\psi(\Omega^\Omega\times\omega)))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,1=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\psi(\Omega^\Omega\times\omega)\times\omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,1,1,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\psi(\Omega^\Omega\times\omega+1)))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,1,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^\omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,3=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^{\psi(\Omega^\Omega)}))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,3,1,2,1,2,3=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^{\psi(\Omega^\Omega\times2)}))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,0,1,1,2,3,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^{\psi(\Omega^\Omega\times\omega)}))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^{\psi(\Omega^\Omega\times\omega)}\times\omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^{\psi(\Omega^\Omega\times\omega)+1}))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^{\psi(\Omega^\Omega\times\omega)+\omega}))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,1,2,3=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega+\Omega^\Omega))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,1,2,3,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega\times2))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,2=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\omega^2))</math> * <math>0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,2,3=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(0)))</math> * <math>0,1,2,0,1,1,0,1,2=\psi(\Omega^{\Omega+1})</math> === Part 6 === * <math>0,1,2,0,1,1,0,1,2,0,1=\psi(\Omega^{\Omega+1})\times\omega</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3=\psi(\Omega^{\Omega+1})\times\psi(\Omega^\Omega)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3=\psi(\Omega^{\Omega+1})^2</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,0,1,1=\psi(\Omega^{\Omega+1})^\omega</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,0,1,1,2=\psi(\Omega^{\Omega+1}+1)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,0,1,1,2,1,2=\psi(\Omega^{\Omega+1}+\Omega)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,0,1,1,2,1,2,1,2=\psi(\Omega^{\Omega+1}+\Omega^2)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,0,1,1,2,3=\psi(\Omega^{\Omega+1}+\Omega^{\psi(\Omega^\Omega)})</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,0,1,1,2,3,1,2,2,1,2,3=\psi(\Omega^{\Omega+1}+\Omega^{\psi(\Omega^{\Omega+1})})</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,1=\psi(\Omega^{\Omega+1}+\Omega^{\psi(\Omega^{\Omega+1})}\times\omega)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,1,2=\psi(\Omega^{\Omega+1}+\Omega^{\psi(\Omega^{\Omega+1})+1})</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,1,2,3,1,2,2,1,2,3,1,2,2,3,4,2,3,3,2,3,4=\psi(\Omega^{\Omega+1}+\Omega^{\psi(\Omega^{\Omega+1})\times2})</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,2=\psi(\Omega^{\Omega+1}+\Omega^\Omega)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,2,0,1,0,1,2=\psi(\Omega^{\Omega+1}+\Omega^\Omega\times2)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,2,0,1,1=\psi(\Omega^{\Omega+1}+\Omega^\Omega\times\omega)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,0,1,2,0,1,1,0,1,2=\psi(\Omega^{\Omega+1}\times2)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1=\psi(\Omega^{\Omega+1}\times\omega)</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1,0,1,1,2=\psi(\Omega^{\Omega+1}\times\psi(0))</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1,0,1,1,2,3=\psi(\Omega^{\Omega+1}\times\psi(\Omega^\Omega))</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,3=\psi(\Omega^{\Omega+1}\times\psi(\Omega^{\Omega+1}))</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1,0,1,1,2,3,1,2,2,1,2,3,1,2,2=\psi(\Omega^{\Omega+1}\times\psi(\Omega^{\Omega+1}\times\omega))</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1,0,1,2=\psi(\Omega^{\Omega+2})</math> * <math>0,1,2,0,1,1,0,1,2,0,1,1,0,1,2,0,1,1,0,1,2=\psi(\Omega^{\Omega+3})</math> * <math>0,1,2,0,1,1,1=\psi(\Omega^{\Omega+\omega})</math> * <math>0,1,2,0,1,1,1,0,1,1,0,1,2=\psi(\Omega^{\Omega+\omega+1})</math> * <math>0,1,2,0,1,1,1,0,1,1,0,1,2,0,1,1,1=\psi(\Omega^{\Omega+\omega\times2})</math> * <math>0,1,2,0,1,1,1,0,1,1,1=\psi(\Omega^{\Omega+\omega^2})</math> * <math>0,1,2,0,1,1,1,0,1,1,2=\psi(\Omega^{\Omega+\psi(0)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,1,0,1,1,2,3,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})\times2})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,1,1=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})\times\omega})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,1,1,0,1,1,2,3,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})^2})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,1,1,1=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})^\omega})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+1)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,2,1,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,2,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^\Omega)})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,0,1,1,2,3,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})}\times\omega)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,1,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})}\times\psi(0))})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})+1})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})+2})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2,2,3,4=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})+\psi(\Omega^\Omega)})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2,2,3,4,2,3,3,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\psi(\Omega^{\Omega+\omega})\times2})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^\Omega)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2,3,1,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^\Omega\times\omega)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2,3,1,2,2,1,2,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}+\Omega^{\Omega+1})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,1,2,3,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}\times2)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega}\times\omega)})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,2,1,2,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega+1})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,2,1,2,3,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega\times2})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,2,2=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega\times\omega})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,2,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\psi(0)})})</math> * <math>0,1,2,0,1,1,1,0,1,1,2,3,1,2,2,2,1,2,2,3,4,2,3,3,3=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})})</math> * <math>0,1,2,0,1,1,1,0,1,2=\psi(\Omega^{\Omega\times2})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega^{\Omega\times2}\times2)</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1=\psi(\Omega^{\Omega\times2}\times\omega)</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2=\psi(\Omega^{\Omega\times2+1})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2,0,1,1,1=\psi(\Omega^{\Omega\times2+\omega})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2,0,1,1,1,0,1,1,1=\psi(\Omega^{\Omega\times2+\omega^2})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega^{\Omega\times3})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,1=\psi(\Omega^{\Omega\times\omega})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega^{\Omega^2})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,1,0,1,2,0,1,1,1=\psi(\Omega^{\Omega^2\times\omega})</math> * <math>0,1,2,0,1,1,1,0,1,2,0,1,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega^{\Omega^3})</math> * <math>0,1,2,0,1,1,1,1=\psi(\Omega^{\Omega^\omega})=\mathrm{SVO}</math> * <math>0,1,2,0,1,1,1,1,0,1,2=\psi(\Omega^{\Omega^\Omega})=\mathrm{LVO}</math> === Part 7 === * <math>0,1,2,0,1,1,1,1,0,1,2,0,1,1,1=\psi(\Omega^{\Omega^\Omega\times\omega})</math> * <math>0,1,2,0,1,1,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega^{\Omega^{\Omega+1}})</math> * <math>0,1,2,0,1,1,1,1,0,1,2,0,1,1,1,0,1,2,0,1,1,1,1=\psi(\Omega^{\Omega^{\Omega+\omega}})</math> * <math>0,1,2,0,1,1,1,1,0,1,2,0,1,1,1,0,1,2,0,1,1,1,1,0,1,2=\psi(\Omega^{\Omega^{\Omega\times2}})</math> * <math>0,1,2,0,1,1,1,1,0,1,2,0,1,1,1,1=\psi(\Omega^{\Omega^{\Omega\times\omega}})</math> * <math>0,1,2,0,1,1,1,1,0,1,2,0,1,1,1,1,0,1,2=\psi(\Omega^{\Omega^{\Omega^2}})</math> * <math>0,1,2,0,1,1,1,1,1=\psi(\Omega^{\Omega^{\Omega^\omega}}) * <math>0,1,2,0,1,1,2=\psi(\psi_1(0))</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2=\psi(\psi_1(0)+\Omega^\Omega)</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,0,1,2=\psi(\psi_1(0)+\Omega^\Omega\times2)</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1=\psi(\psi_1(0)+\Omega^\Omega\times\omega)</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,0,1,2=\psi(\psi_1(0)+\Omega^{\Omega+1})</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,0,1,2,0,1,0,1,2,0,1,1,0,1,2=\psi(\psi_1(0)+\Omega^{\Omega+1}\times2)</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,0,1,2,0,1,1,0,1,2=\psi(\psi_1(0)+\Omega^{\Omega+2})</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,1=\psi(\psi_1(0)+\Omega^{\Omega+\omega})</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,1,0,1,2=\psi(\psi_1(0)+\Omega^{\Omega\times2})</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,2=\psi(\psi_1(0)\times2)</math> * <math>0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,2,0,1,0,1,2,0,1,1,2=\psi(\psi_1(0)\times3)</math> * <math>0,1,2,0,1,1,2,0,1,1=\psi(\psi_1(0)\times\omega)</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2=\psi(\psi_1(0)\times\Omega)</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,1=\psi(\psi_1(0)\times\Omega^\omega)</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\psi_1(0)\times\Omega^\Omega)</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,1,1=\psi(\psi_1(0)\times\Omega^{\Omega^\omega})</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,2=\psi(\psi_1(0)^2)</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,2,0,1,1,0,1,2=\psi(\psi_1(0)^2\times\Omega)</math> * <math>0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,2,0,1,1,0,1,2,0,1,1,2=\psi(\psi_1(0)^3)</math> * <math>0,1,2,0,1,1,2,0,1,1,1=\psi(\psi_1(0)^\omega)</math> * <math>0,1,2,0,1,1,2,0,1,1,1,0,1,1,0,1,2,0,1,1,2,0,1,1=\psi(\psi_1(0)^{\omega\times2})</math> * <math>0,1,2,0,1,1,2,0,1,1,1,0,1,1,1=\psi(\psi_1(0)^{\omega^2})</math> * <math>0,1,2,0,1,1,2,0,1,1,1,0,1,2=\psi(\psi_1(0)^{\Omega})</math> * <math>0,1,2,0,1,1,2,0,1,1,1,0,1,2,0,1,1,2=\psi(\psi_1(0)^{\psi_1(0)})</math> * <math>0,1,2,0,1,1,2,0,1,1,1,0,1,2,0,1,1,2,0,1,1,1=\psi(\psi_1(0)^{\psi_1(0)\times\omega})</math> * <math>0,1,2,0,1,1,2,0,1,1,1,0,1,2,0,1,1,2,0,1,1,1,0,1,2,0,1,1,2=\psi(\psi_1(0)^{\psi_1(0)^2})</math> * <math>0,1,2,0,1,1,2,0,1,1,1,1=\psi(\psi_1(0)^{\psi_1(0)^\omega})</math> * <math>0,1,2,0,1,1,2,0,1,1,2=\psi(\psi_1(1))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,0,1,1,2=\psi(\psi_1(2))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,1=\psi(\psi_1(\omega))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3=\psi(\psi_1(\psi(\Omega^\Omega)))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2=\psi(\psi_1(\psi(\Omega^\Omega)+1))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,0,1,1,2,3=\psi(\psi_1(\psi(\Omega^\Omega)\times2))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,1=\psi(\psi_1(\psi(\Omega^\Omega)\times\omega))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,1,0,1,1,2,1=\psi(\psi_1(\psi(\Omega^\Omega)\times\omega^2))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,1,0,1,1,2,3=\psi(\psi_1(\psi(\Omega^\Omega)^2))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,1,1=\psi(\psi_1(\psi(\Omega^\Omega)^\omega))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,1,1,2=\psi(\psi_1(\psi(\Omega^\Omega+1)))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,0,1,1,2,3=\psi(\psi_1(\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)})))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,1=\psi(\psi_1(\psi(\Omega^\Omega+\Omega^{\psi(\Omega^\Omega)}\times\omega)))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,1,2,1,2,3=\psi(\psi_1(\psi(\Omega^\Omega\times2)))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,1,2,2=\psi(\psi_1(\psi(\Omega^\Omega\times\omega)))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,1,2,2,1,2,3=\psi(\psi_1(\psi(\Omega^{\Omega+1})))</math> * <math>0,1,2,0,1,1,2,0,1,1,2,3,1,2,2,3=\psi(\psi_1(\psi(\psi_1(0))))</math> * <math>0,1,2,0,1,1,2,0,1,2=\psi(\psi_1(\Omega))</math> * <math>0,1,2,0,1,1,2,0,1,2,0,1,1,2=\psi(\psi_1(\Omega+1))</math> * <math>0,1,2,0,1,1,2,0,1,2,0,1,1,2,0,1,2=\psi(\psi_1(\Omega\times2))</math> * <math>0,1,2,0,1,1,2,1=\psi(\psi_1(\Omega\times\omega))</math> * <math>0,1,2,0,1,1,2,1,0,1,1,2,0,1,2=\psi(\psi_1(\Omega\times\omega+\Omega))</math> * <math>0,1,2,0,1,1,2,1,0,1,1,2,0,1,2,0,1,1,2,1=\psi(\psi_1(\Omega\times\omega\times2))</math> * <math>0,1,2,0,1,1,2,1,0,1,1,2,1=\psi(\psi_1(\Omega\times\omega^2))</math> * <math>0,1,2,0,1,1,2,1,0,1,2=\psi(\psi_1(\Omega^2))</math> * <math>0,1,2,0,1,1,2,1,0,1,2,0,1,1,2,0,1,2=\psi(\psi_1(\Omega^3))</math> * <math>0,1,2,0,1,1,2,1,1=\psi(\psi_1(\Omega^\omega))</math> * <math>0,1,2,0,1,1,2,1,1,1=\psi(\psi_1(\Omega^{\Omega^\omega}))</math> * <math>0,1,2,0,1,1,2,1,1,2=\psi(\psi_1(\psi_1(0)))</math> * <math>0,1,2,0,1,1,2,1,2=\psi(\Omega_2)</math> * <math>0,1,2,0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2\times2)</math> * <math>0,1,2,0,1,1,2,1,2,0,1,2=\psi(\Omega_2\times\Omega)</math> * <math>0,1,2,0,1,1,2,1,2,1=\psi(\Omega_2\times\Omega\times\omega)</math> * <math>0,1,2,0,1,1,2,1,2,1,0,1,2=\psi(\Omega_2\times\Omega^2)</math> * <math>0,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega_2\times\psi_1(0))</math> * <math>0,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^2)</math> * <math>0,1,2,0,1,1,2,2=\psi(\Omega_2^\omega)</math> * <math>0,1,2,0,1,1,2,2,0,1,1,2,2=\psi(\Omega_2^\omega\times2)</math> * <math>0,1,2,0,1,1,2,2,0,1,2=\psi(\Omega_2^\omega\times\Omega)</math> * <math>0,1,2,0,1,1,2,2,1=\psi(\Omega_2^\omega\times\Omega\times\omega)</math> * <math>0,1,2,0,1,1,2,2,1,1,2=\psi(\Omega_2^\omega\times\psi_1(0))</math> * <math>0,1,2,0,1,1,2,2,1,1,2,1,2=\psi(\Omega_2^\omega\times\psi_1(\Omega_2))</math> * <math>0,1,2,0,1,1,2,2,1,1,2,2=\psi(\Omega_2^\omega\times\psi_1(\Omega_2\times\omega))</math> * <math>0,1,2,0,1,1,2,2,1,2=\psi(\Omega_2^{\omega+1})</math> * <math>0,1,2,0,1,1,2,2,1,2,1,2,2=\psi(\Omega_2^{\omega\times2})</math> * <math>0,1,2,0,1,1,2,2,1,2,2=\psi(\Omega_2^{\omega^2})</math> * <math>0,1,2,0,1,1,2,2,2=\psi(\Omega_2^{\omega^\omega})</math> * <math>0,1,2,0,1,1,2,2,3=\psi(\Omega_2^{\psi(0)})</math> * <math>0,1,2,0,1,1,2,3=\psi(\Omega_2^{\psi(\Omega_\Omega)})</math> * <math>0,1,2,0,1,1,2,3,1,2,2,3=\psi(\Omega_2^{\psi(\psi_1(0))})</math> * <math>0,1,2,0,1,1,2,3,1,2,2,3,1,2,2,3=\psi(\Omega_2^{\psi(\psi_1(1))})</math> * <math>0,1,2,0,1,1,2,3,1,2,2,3,2,3=\psi(\Omega_2^{\psi(\Omega_2)})</math> * <math>0,1,2,0,1,1,2,3,1,2,2,3,3=\psi(\Omega_2^{\psi(\Omega_2^\omega)})</math> * <math>0,1,2,0,1,1,2,3,1,2,2,3,3,4=\psi(\Omega_2^{\psi(\Omega_2^{\psi(0)})})</math> * <math>0,1,2,0,1,2=\psi(\Omega_2^\Omega)</math> === Part 8 === * <math>0,1,2,0,1,2,0,1=\psi(\Omega_2^\Omega)\times\omega</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3=\psi(\Omega_2^\Omega)\times\psi(\Omega^\Omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega)^2</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega)^3</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1=\psi(\Omega_2^\Omega)^\omega</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,0,1,1=\psi(\Omega_2^\Omega)^{\omega^2}</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,1=\psi(\Omega_2^\Omega)^{\psi(\Omega_2^\Omega)^\omega}</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2=\psi(\Omega_2^\Omega+1)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega+\psi(\Omega_2^\Omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi(\Omega_2^\Omega)\times\omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega+\psi(\Omega_2^\Omega+1))</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega+\Omega^2)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,3=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega^\Omega)})</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)})</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,3,1,2,3,0,1,1,2=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)}+1)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,0,1,1,2,3,1,2,3,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)}\times2)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,1=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)}\times\omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,1,1,2=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)}\times\psi(0))</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,1,2=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)+1})</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,1,2,1,2=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)+2})</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,1,2,1,2,2=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)+\omega})</math> * <math>0,1,2,0,1,2,0,1,0,1,1,2,3,1,2,3,1,2,1,2,2,3,4,2,3,4=\psi(\Omega_2^\Omega+\Omega^{\psi(\Omega_2^\Omega)\times2})</math> * <math>0,1,2,0,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^\Omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^\Omega\times2)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1=\psi(\Omega_2^\Omega+\Omega^\Omega\times\omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,0,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^\Omega\times\omega+\Omega^\Omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,0,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^\Omega\times\omega+\Omega^\Omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,0,1,0,1,2,0,1,1=\psi(\Omega_2^\Omega+\Omega^\Omega\times\omega\times2)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,0,1,1=\psi(\Omega_2^\Omega+\Omega^\Omega\times\omega^2)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,0,1,1,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega+\Omega^\Omega\times\psi(\Omega_2^\Omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^{\Omega+1})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega+\Omega^{\Omega+\omega})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^{\Omega\times2})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^{\Omega\times2+1})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^{\Omega\times2+1})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega+\Omega^{\Omega\times2+\omega})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2,0,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^{\Omega\times3})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega+\Omega^{\Omega\times\omega})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega_2^\Omega+\Omega^{\Omega^2})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,1,1=\psi(\Omega_2^\Omega+\Omega^{\Omega^\omega})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\psi_1(0))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi_1(\omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,0,1,1,2,3=\psi(\Omega_2^\Omega+\psi_1(\psi(\Omega^\Omega)))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi_1(\Omega\times\omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega^\omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\psi_1(0)))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^2))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,1,2,3=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^{\psi(\Omega^\Omega)}))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)+\Omega^\Omega)</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,2,0,1,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)+\Omega^{\Omega+\omega})</math> * <math>0,1,2,0,1,2,0,1,0,1,2,0,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times2)</math> * <math>0,1,2,0,1,2,0,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega)</math> * <math>0,1,2,0,1,2,0,1,1,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,0,1,2,0,1,1,0,1,0,1,2,0,1,2,0,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega\times2)</math> * <math>0,1,2,0,1,2,0,1,1,0,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega^2)</math> * <math>0,1,2,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\Omega)</math> * <math>0,1,2,0,1,2,0,1,1,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\Omega^\omega)</math> * <math>0,1,2,0,1,2,0,1,1,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\psi_1(0))</math> * <math>0,1,2,0,1,2,0,1,1,0,1,2,0,1,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\psi_1(1))</math> * <math>0,1,2,0,1,2,0,1,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^2)</math> === Part 9 === * <math>0,1,2,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^\omega)</math> * <math>0,1,2,0,1,2,0,1,1,1,0,1,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^{\omega\times2})</math> * <math>0,1,2,0,1,2,0,1,1,1,0,1,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^{\omega^2})</math> * <math>0,1,2,0,1,2,0,1,1,1,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^{\Omega})</math> * <math>0,1,2,0,1,2,0,1,1,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^{\psi_1(\Omega_2^\Omega)})</math> * <math>0,1,2,0,1,2,0,1,1,1,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^{\psi_1(\Omega_2^\Omega)^\omega})</math> * <math>0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+2))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\Omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\Omega\times\omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2)))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,1,2,3=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^{\psi(\Omega^\Omega)})))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^{\psi(\Omega_2^\Omega)})))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)+1))</math> * <math>0,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+1)))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega+\Omega_2+\Omega^\Omega)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega+\Omega_2))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,1=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega+\Omega_2)\times\omega)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega+\Omega_2+1))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2\times2)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\Omega)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\Omega\times2)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,1=\psi(\Omega_2^\Omega+\Omega_2\times\Omega\times\omega)</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(0))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2\times2))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2\times\Omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2,1=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2\times\Omega\times\omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^2))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,1,2,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\Omega+\Omega_2))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\Omega+\Omega_2\times\Omega))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\Omega+\Omega_2\times\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,0,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2^2)</math> * <math>0,1,2,0,1,2,0,1,1,2,2=\psi(\Omega_2^\Omega+\Omega_2^\omega)</math> * <math>0,1,2,0,1,2,0,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega+\Omega_2^{\psi(\Omega_2^\Omega)})</math> * <math>0,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times2)</math> * <math>0,1,2,0,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times3)</math> * <math>0,1,2,1=\psi(\Omega_2^\Omega\times\omega)</math> === Part 10 === * <math>0,1,2,1,0,1,1,2=\psi(\Omega_2^\Omega\times\omega+\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,1,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2)</math> * <math>0,1,2,1,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2^2)</math> * <math>0,1,2,1,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2^2)</math> * <math>0,1,2,1,0,1,1,2,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2^\omega)</math> * <math>0,1,2,1,0,1,1,2,3=\psi(\Omega_2^\Omega\times\omega+\Omega_2^{\psi(\Omega^\Omega)})</math> * <math>0,1,2,1,0,1,1,2,3,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2^{\psi(\Omega_2^\Omega\times\omega)})</math> * <math>0,1,2,1,0,1,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2^\Omega)</math> * <math>0,1,2,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\omega+\Omega_2^\Omega\times2)</math> * <math>0,1,2,1,0,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\omega\times2)</math> * <math>0,1,2,1,0,1,2,1=\psi(\Omega_2^\Omega\times\omega^2)</math> * <math>0,1,2,1,1=\psi(\Omega_2^\Omega\times\omega^\omega)</math> * <math>0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi(0))</math> * <math>0,1,2,1,1,2,=\psi(\Omega_2^\Omega\times\psi(0))</math> * <math>0,1,2,1,1,2,0,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi(0)\times2)</math> * <math>0,1,2,1,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi(0)\times\omega)</math> * <math>0,1,2,1,1,2,0,1,2,1,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi(0)^2)</math> * <math>0,1,2,1,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\psi(0)^\omega)</math> * <math>0,1,2,1,1,2,1=\psi(\Omega_2^\Omega\times\psi(\omega))</math> * <math>0,1,2,1,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi(\psi(0)))</math> * <math>0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega))</math> * <math>0,1,2,1,1,2,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega\times\psi(\Omega)))</math> * <math>0,1,2,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega^2))</math> * <math>0,1,2,1,1,2,2=\psi(\Omega_2^\Omega\times\psi(\Omega^\omega))</math> * <math>0,1,2,1,1,2,3=\psi(\Omega_2^\Omega\times\psi(\Omega^\Omega))</math> * <math>0,1,2,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega))</math> * <math>0,1,2,1,1,2,3,2=\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,1,1,2,3,2,1,2,3,2=\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\omega^2))</math> * <math>0,1,2,1,1,2,3,2,2=\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\omega^\omega))</math> * <math>0,1,2,1,1,2,3,2,2,3=\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\psi(0)))</math> * <math>0,1,2,1,1,2,3,2,2,3,4,3=\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\psi(\Omega_2^\Omega)))</math> * <math>0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega)</math> === Part 11 === * <math>0,1,2,1,2,0,1=\psi(\Omega_2^\Omega\times\Omega)\times\omega</math> * <math>0,1,2,1,2,0,1,0,1,1,2=\psi(\Omega_2^\Omega\times\Omega)\times\psi(0)</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\Omega)^2</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,0,1,1,2=\psi(\Omega_2^\Omega\times\Omega+1)</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega)</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,0,1,1,2,2=\psi(\Omega_2^\Omega\times\Omega+\Omega^\omega)</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,0,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\psi(\Omega_2^\Omega\times\Omega)})</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,1=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\psi(\Omega_2^\Omega\times\Omega)}\times\omega)</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\psi(\Omega_2^\Omega\times\Omega)}\times\psi(0))</math> * <math>0,1,2,1,2,0,1,0,1,1,2,3,2,3,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\psi(\Omega_2^\Omega\times\Omega)+1})</math> * <math>0,1,2,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega^\Omega)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega^\Omega\times2)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1=\psi(\Omega_2^\Omega\times\Omega+\Omega^\Omega\times\omega)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,0,1,1=\psi(\Omega_2^\Omega\times\Omega+\Omega^\Omega\times\omega^2)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\Omega+1})</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\Omega+\omega})</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,1,1=\psi(\Omega_2^\Omega\times\Omega+\Omega^{\Omega^\omega})</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(0))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega\times\omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\psi_1(0)))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^2))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)\times2)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)\times\omega)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,0,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)\times\psi(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)\times\Omega)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)^2)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)^\omega)</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+\Omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+\Omega_2))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+\Omega_2\times2))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+\Omega_2^2))</math> * <math>0,1,2,1,2,0,1,0,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times2))</math> * <math>0,1,2,1,2,0,1,0,1,2,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,1,2,0,1,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\psi(0)))</math> * <math>0,1,2,1,2,0,1,0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\psi(\Omega)))</math> * <math>0,1,2,1,2,0,1,0,1,2,1,1,2,3,1,2,3=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\psi(\Omega_2^\Omega)))</math> * <math>0,1,2,1,2,0,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\Omega))</math> === Part 12 === * <math>0,1,2,1,2,0,1,1=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega)\times\omega)</math> * <math>0,1,2,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega_2)</math> * <math>0,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega)</math> * <math>0,1,2,1,2,0,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\omega)</math> * <math>0,1,2,1,2,0,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\psi(0))</math> * <math>0,1,2,1,2,0,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\psi(\Omega))</math> * <math>0,1,2,1,2,0,1,2,0,1,2,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega\times 2)</math> * <math>0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega\times3)</math> * <math>0,1,2,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\Omega\times\omega)</math> * <math>0,1,2,1,2,0,1,2,1,0,1,2,1=\psi(\Omega_2^\Omega\times\Omega\times\omega^2)</math> * <math>0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega^2)</math> * <math>0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\Omega^\omega)</math> * <math>0,1,2,1,2,0,1,2,1,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega^\Omega)</math> * <math>0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(0))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)+\Omega_2^\Omega\times\Omega)</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)\times2)</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(0)\times\omega)</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)\times\Omega)</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)^2)</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(0)^\omega)</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(1))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega\times\omega))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega^\omega))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^2))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\omega))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,3=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^{\psi(\Omega^\Omega)}))</math> * <math>0,1,2,1,2,0,1,2,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^{\psi(\Omega_2^\Omega\times\Omega)}))</math> * <math>0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega}\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+1))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+\Omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\Omega)))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+\psi_1(\Omega_2^\Omega\times\Omega)\times\omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega\times2))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega\times\omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega^2))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(0)))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2)))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega))\times\omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+1))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega)))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega))))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega))\times\omega))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+1)))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2\times2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega\times2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega\times\omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega^2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega^\omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\Omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)^2)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)^\omega)</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\Omega_2))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\Omega_2^2))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times2))</math> * <math>0,1,2,1,2,0,1,2,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times3))</math> * <math>0,1,2,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\omega^2))</math> * <math>0,1,2,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\psi(0)))</math> * <math>0,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,1,2,2=\psi(\Omega_2^{\Omega+1})</math> === Part 13 === * <math>0,1,2,1,2,2,1,2=\psi(\Omega_2^{\Omega+1}\times\Omega)</math> * <math>0,1,2,1,2,2,1,2,0,1,2,1,2,2,1,2=\psi(\Omega_2^{\Omega+1}\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,1,2,2,1,2,1=\psi(\Omega_2^{\Omega+1}\times\psi_1(\Omega_2^{\Omega+1}\times\omega))</math> * <math>0,1,2,1,2,2,1,2,1,2=\psi(\Omega_2^{\Omega+1}\times\psi_1(\Omega_2^{\Omega+1}\times\Omega))</math> * <math>0,1,2,1,2,2,1,2,1,2,2=\psi(\Omega_2^{\Omega+2})</math> * <math>0,1,2,1,2,2,1,2,1,2,2,1,2,1,2,2=\psi(\Omega_2^{\Omega+3})</math> * <math>0,1,2,1,2,2,1,2,2=\psi(\Omega_2^{\Omega+\omega})</math> * <math>0,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,2=\psi(\Omega_2^{\Omega+\omega\times2})</math> * <math>0,1,2,1,2,2,1,2,2,1,2,2=\psi(\Omega_2^{\Omega+\omega^2})</math> * <math>0,1,2,1,2,2,2=\psi(\Omega_2^{\Omega+\omega^\omega})</math> * <math>0,1,2,1,2,2,3=\psi(\Omega_2^{\Omega+\psi(0)})</math> * <math>0,1,2,1,2,2,3,4,2,3,4=\psi(\Omega_2^{\Omega+\psi(\Omega_2)})</math> * <math>0,1,2,1,2,2,3,4,2,3,4,2,3,4=\psi(\Omega_2^{\Omega+\psi(\Omega_2^\Omega)})</math> * <math>0,1,2,1,2,2,3,4,2,3,4,3,4=\psi(\Omega_2^{\Omega+\psi(\Omega_2^\Omega\times\Omega)})</math> * <math>0,1,2,1,2,3=\psi(\Omega_2^{\Omega\times2})</math> * <math>0,1,2,1,2,3,0,1,0,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega^\Omega)</math> * <math>0,1,2,1,2,3,0,1,0,1,2,0,1,2=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,1,2,3,0,1,0,1,2,1=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,1,2,3,0,1,0,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,1,2,3,0,1,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^{\Omega+2}))</math> * <math>0,1,2,1,2,3,0,1,0,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^{\Omega+\omega}))</math> * <math>0,1,2,1,2,3,0,1,0,1,2,1,2,3=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,1,2,3,0,1,1=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^{\Omega\times2})\times\omega)</math> * <math>0,1,2,1,2,3,0,1,1,2=\psi(\Omega_2^{\Omega\times2}+\psi_1(\Omega_2^{\Omega\times2}+1))</math> * <math>0,1,2,1,2,3,0,1,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2)</math> * <math>0,1,2,1,2,3,0,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times2)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\omega)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\Omega)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\Omega\times\omega)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\Omega^2)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\Omega^\omega)</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(0))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,1=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,1,2,1=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\omega)))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,3=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,1,2,3,0,1,2,0,1,2,1,2,3,0,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2})+\Omega^\Omega)</math> * <math>0,1,2,1,2,3,0,1,2,1=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2})\times\omega)</math> * <math>0,1,2,1,2,3,0,1,2,1,0,1,2,1,2,3=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2})^2)</math> * <math>0,1,2,1,2,3,0,1,2,1,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}+1))</math> * <math>0,1,2,1,2,3,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}+\Omega_2))</math> * <math>0,1,2,1,2,3,0,1,2,1,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}+\Omega_2^\omega))</math> * <math>0,1,2,1,2,3,0,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}+\Omega_2^\Omega))</math> * <math>0,1,2,1,2,3,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega\times2}+\Omega_2^\Omega)))</math> * <math>0,1,2,1,2,3,0,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^{\Omega+1})</math> * <math>0,1,2,1,2,3,0,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^{\Omega+1})</math> * <math>0,1,2,1,2,3,0,1,2,1,2,2,0,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^{\Omega+1}\times2)</math> * <math>0,1,2,1,2,3,0,1,2,1,2,2,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^{\Omega+2})</math> * <math>0,1,2,1,2,3,0,1,2,1,2,2,1,2,2=\psi(\Omega_2^{\Omega\times2}+\Omega_2^{\Omega+\omega})</math> * <math>0,1,2,1,2,3,0,1,2,1,2,3=\psi(\Omega_2^{\Omega\times2}\times2)</math> === Part 14 === * <math>0,1,2,1,2,3,1=\psi(\Omega_2^{\Omega\times2}\times\omega)</math> * <math>0,1,2,1,2,3,1,2=\psi(\Omega_2^{\Omega\times2}\times\Omega)</math> * <math>0,1,2,1,2,3,1,2,0,1,2,1,2,3,1,2=\psi(\Omega_2^{\Omega\times2}\times\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,1,2,3,1,2,1,2=\psi(\Omega_2^{\Omega\times2}\times\psi_1(\Omega_2^{\Omega\times2}\times\Omega))</math> * <math>0,1,2,1,2,3,1,2,1,2,2=\psi(\Omega_2^{\Omega\times2+1})</math> * <math>0,1,2,1,2,3,1,2,1,2,3=\psi(\Omega_2^{\Omega\times3})</math> * <math>0,1,2,1,2,3,1,2,2=\psi(\Omega_2^{\Omega\times\omega})</math> * <math>0,1,2,1,2,3,1,2,2,1,2,2,3=\psi(\Omega_2^{\Omega\times\psi(0)})</math> * <math>0,1,2,1,2,3,1,2,2,1,2,3=\psi(\Omega_2^{\Omega^2})</math> * <math>0,1,2,1,2,3,1,2,2,3=\psi(\Omega_2^{\psi_1(0)})</math> * <math>0,1,2,1,2,3,1,2,2,3,2,3=\psi(\Omega_2^{\psi_1(\Omega_2)})</math> * <math>0,1,2,1,2,3,1,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega)})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,1,2,2=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega)+1})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,1,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega)+\Omega})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega)+\psi_1(0)})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega)\times2})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,2=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega)\times\omega})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega+1)})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,2,3,1,2,3,1,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega))})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,2,3,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega+\Omega_2)})</math> * <math>0,1,2,1,2,3,1,2,3,1,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega\times2)})</math> * <math>0,1,2,1,2,3,2=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega\times\omega)})</math> * <math>0,1,2,1,2,3,2,3=\psi(\Omega_2^{\psi_1(\Omega_2^\Omega\times\Omega)})</math> * <math>0,1,2,1,2,3,2,3,2,3,3=\psi(\Omega_2^{\psi_1(\Omega_2^{\Omega+1})})</math> * <math>0,1,2,1,2,3,2,3,4=\psi(\Omega_2^{\psi_1(\Omega_2^{\Omega\times2})})</math> * <math>0,1,2,1,2,3,2,3,4,2,3,4=\psi(\Omega_2^{\psi_1(\Omega_2^{\psi_1(\Omega_2^\Omega)})})</math> * <math>0,1,2,2=\psi(\Omega_2^{\Omega_2})</math> * <math>0,1,2,2,0,1=\psi(\Omega_2^{\Omega_2})\times\omega</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3=\psi(\Omega_2^{\Omega_2})^2</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1=\psi(\Omega_2^{\Omega_2})^\omega</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}+1)</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi(\Omega_2^{\Omega_2}+1))</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\Omega)</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2,2=\psi(\Omega_2^{\Omega_2}+\Omega)</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2,2=\psi(\Omega_2^{\Omega_2}+\Omega^\omega)</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega^{\psi(\Omega_2^{\Omega_2})})</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,0,1,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\Omega^{\psi(\Omega_2^{\Omega_2})}+1)</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}+\Omega^{\psi(\Omega_2^{\Omega_2})}\times\omega)</math> * <math>0,1,2,2,0,1,0,1,1,2,3,3,1,2=\psi(\Omega_2^{\Omega_2}+\Omega^{\psi(\Omega_2^{\Omega_2})+1})</math> * <math>0,1,2,2,0,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\Omega^{\Omega})</math> * <math>0,1,2,2,0,1,0,1,2,0,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\Omega^\Omega\times2)</math> * <math>0,1,2,2,0,1,0,1,2,0,1,1=\psi(\Omega_2^{\Omega_2}+\Omega^\Omega\times\omega)</math> * <math>0,1,2,2,0,1,0,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(0))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega)\times\omega)</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega+1))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega+\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega+\Omega_2))</math> * <math>0,1,2,2,0,1,0,1,2,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times2))</math> * <math>0,1,2,2,0,1,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi(0)))</math> * <math>0,1,2,2,0,1,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi(\Omega)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega)\times\omega)</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega+1))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega\times\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\Omega^2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(0)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+1))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega\times\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega^2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\psi_1(0)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\psi_1(\Omega_2)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\omega+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\Omega\times\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\Omega^2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\Omega^\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\psi_1(0)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\psi_1(\Omega_2)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)^2))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)^\omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+1)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\Omega)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,2,0,1,2,1,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\psi_1(0))))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega))))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^2)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)^\omega)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+1))))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\Omega_2^2)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times2)))</math> === Part 15 === * <math>0,1,2,2,0,1,0,1,2,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\omega)))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\Omega))))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,2,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega+2}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega+\omega}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega+\omega^\omega}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega+\psi(0)}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega\times2}\times\Omega))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega\times2+1}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega\times3}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega\times\omega}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,1,2,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\psi_1(0)}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,1,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\psi_1(\Omega_2^\Omega)}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\psi_1(\Omega_2^\Omega\times\omega)}))</math> * <math>0,1,2,2,0,1,0,1,2,1,2,3,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\psi_1(\Omega_2^\Omega\times\Omega)}))</math> * <math>0,1,2,2,0,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,0,1,2,2,0,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times2)</math> * <math>0,1,2,2,0,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\omega)</math> * <math>0,1,2,2,0,1,1,0,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\omega^2)</math> * <math>0,1,2,2,0,1,1,0,1,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\omega^\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,0,1,2,2,0,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\omega\times2)</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\Omega\times\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\Omega^2)</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\Omega^\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\Omega^\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(0))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(1))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\psi_1(0)))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\Omega+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\Omega\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(0)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(0)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega))))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times2))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)^2))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+1)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega+\Omega_2)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times2)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\Omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,2,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^{\Omega+2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^{\Omega+\omega}))</math> === Part 16 === * <math>0,1,2,2,0,1,1,0,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^2)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^2\times\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^2\times\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^2\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^2\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^2\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^3)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,1,1=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})^\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2}+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2})\times\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2})\times\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2})^2)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2}+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\Omega+1})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\Omega\times2})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,1,2,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(0)})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,1,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^\Omega)})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^\Omega\times\Omega)})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,2,3,4=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega\times2})})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times2)</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2,3,3,0,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,2,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}+\psi_1(\Omega_2^{\Omega_2})))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,2,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}+\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})})))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}+\Omega_2))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times2))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})+1})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})+\Omega})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})\times2})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})\times\omega})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})\times\Omega})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,2,3,4,4=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})^2})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,2,3,4,4,1,2,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}+1)})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,2,3,4,4,1,2,3=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega)})</math> * <math>0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,2,3,4,4,1,2,3,2,3,4,4=\psi(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})})})</math> * <math>0,1,2,2,0,1,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}\times2)</math> === Part 17 === * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2=\psi(\Omega_2^{\Omega_2}\times2+\Omega^\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2})\times\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2})^2)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})\times\omega}))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,0,1,2,2,0,1,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2)\times\omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2)\times\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2)\times\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2)\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2)\times\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2)^2)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}\times2+\psi_1(\Omega_2^{\Omega_2}\times2+1))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3,0,1,2=\psi(\Omega_2^{\Omega_2}\times2+\Omega_2^\Omega)</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3,0,1,2,1,2,3,3,1,2,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times2+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}\times2)})</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}\times2+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}\times2)}\times\psi(\Omega_2^{\Omega_2}\times2+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}\times2)}\times\omega))</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}\times2+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}\times2)+1})</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3,1,2,2=\psi(\Omega_2^{\Omega_2}\times2+\Omega_2^{\psi_1(\Omega_2^{\Omega_2}\times2)\times\omega})</math> * <math>0,1,2,2,0,1,1,0,1,2,2,0,1,1,0,1,2,2=\psi(\Omega_2^{\Omega_2}\times3)</math> * <math>0,1,2,2,0,1,1,1=\psi(\Omega_2^{\Omega_2}\times\omega)</math> === Part 18 === * <math>0,1,2,2,0,1,1,1=\psi(\Omega_2^{\Omega_2}\times\omega)</math> * <math>0,1,2,2,0,1,1,1,0,1,1,1=\psi(\Omega_2^{\Omega_2}\times\omega^2)</math> * <math>0,1,2,2,0,1,1,1,0,1,2=\psi(\Omega_2^{\Omega_2}\times\Omega)</math> * <math>0,1,2,2,0,1,1,1,0,1,2,0,1,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(0))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,0,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega\times\Omega\times2))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega\times\Omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+1))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2})\times\omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\psi_1(\Omega_2^{\Omega_2}+1)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2})))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\Omega\times2}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}+1))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,0,1,2,1,2,3,3,0,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times2))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi(0)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\Omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,0,1,2,1,2,3,3,0,1,2,1,2,3,3,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\Omega\times2))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,0,1,2,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\Omega\times\omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,0,1,2,1,2,3,3,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^\Omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,1=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^\Omega\times\omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2})))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,1,2,3,3,0,1,2,1,2,3,3,1=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2})\times\omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,1,2,3,3,0,1,2,1,2,3,3,1,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})})))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,1,2,3,3,1,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})}\times\Omega)))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})+1}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,2,3,4,4=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}+\Omega_2^{\psi_1(\Omega_2^{\Omega_2})\times2}))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,2,1,2,3,3=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}\times2))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,1,2,3,3,1,2,2,2=\psi(\Omega_2^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}\times\omega))</math> * <math>0,1,2,2,0,1,1,1,0,1,2,2=\psi(\Omega_2^{\Omega_2+1})</math> * <math>0,1,2,2,0,1,1,1,0,1,2,2,0,1,1,1=\psi(\Omega_2^{\Omega_2+\omega})</math> * <math>0,1,2,2,0,1,1,1,1=\psi(\Omega_2^{\Omega_2+\omega^2})</math> * <math>0,1,2,2,0,1,1,1,1,1=\psi(\Omega_2^{\Omega_2\times\omega})</math> * <math>0,1,2,2,0,1,1,1,1,1,0,1,2,2=\psi(\Omega_2^{\Omega_2^2})</math> * <math>0,1,2,2,0,1,1,2=\psi(\psi_2(0))</math> === Part 19 === * <math>0,1,2,2,0,1,1,2=\psi(\psi_2(0))</math> * <math>0,1,2,2,0,1,1,2,0,1,0,1,2,2=\psi(\psi_2(0)+\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,1,2,0,1,0,1,2,2,0,1,1,2=\psi(\psi_2(0)\times2)</math> * <math>0,1,2,2,0,1,1,2,0,1,1=\psi(\psi_2(0)\times\omega)</math> * <math>0,1,2,2,0,1,1,2,0,1,1,0,1,2,2=\psi(\psi_2(0)\times\Omega_2)</math> * <math>0,1,2,2,0,1,1,2,0,1,1,0,1,2,2,0,1,1,2=\psi(\psi_2(0)^2)</math> * <math>0,1,2,2,0,1,1,2,0,1,1,2=\psi(\psi_2(1))</math> * <math>0,1,2,2,0,1,1,2,0,1,2,2=\psi(\psi_2(\Omega_2))</math> * <math>0,1,2,2,0,1,1,2,1=\psi(\psi_2(\Omega_2)\times\omega)</math> * <math>0,1,2,2,0,1,1,2,1,1,2=\psi(\psi_2(\Omega_2+1))</math> * <math>0,1,2,2,0,1,1,2,1,2=\psi(\Omega_3)</math> * <math>0,1,2,2,0,1,2=\psi(\Omega_3^\Omega)</math> * <math>0,1,2,2,0,1,2,0,1,0,1,2,2,0,1,2=\psi(\Omega_3^\Omega+\psi_1(\Omega_3^\Omega))</math> * <math>0,1,2,2,0,1,2,0,1,1=\psi(\Omega_3^\Omega+\psi_1(\Omega_3^\Omega)\times\omega)</math> * <math>0,1,2,2,0,1,2,0,1,1,0,1,2,1,2,3,3,0,1,1,2=\psi(\Omega_3^\Omega+\psi_1(\Omega_3^\Omega+1))</math> * <math>0,1,2,2,0,1,2,0,1,1,0,1,2,1,2,3,3,0,1,1,2,1,2=\psi(\Omega_3^\Omega+\Omega_2)</math> * <math>0,1,2,2,0,1,2,0,1,1,0,1,2,2=\psi(\Omega_3^\Omega+\Omega_2^{\Omega_2})</math> * <math>0,1,2,2,0,1,2,0,1,1,0,1,2,2,0,1,1,2=\psi(\Omega_3^\Omega+\psi_2(0))</math> * <math>0,1,2,2,0,1,2,0,1,1,0,1,2,2,0,1,2=\psi(\Omega_3^\Omega+\psi_2(\Omega_3^\Omega))</math> * <math>0,1,2,2,0,1,2,0,1,1,1=\psi(\Omega_3^\Omega+\psi_2(\Omega_3^\Omega)\times\omega)</math> * <math>0,1,2,2,0,1,2,0,1,1,2=\psi(\Omega_3^\Omega+\psi_2(\Omega_3^\Omega+1))</math> * <math>0,1,2,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_3^\Omega+\Omega_3)</math> * <math>0,1,2,2,0,1,2,0,1,2=\psi(\Omega_3^\Omega\times2)</math> * <math>0,1,2,2,0,1,2,0,1,2,1=\psi(\Omega_3^\Omega\times\omega)</math> * <math>0,1,2,2,0,1,2,0,1,2,1,2=\psi(\Omega_3^\Omega\times\Omega)</math> * <math>0,1,2,2,0,1,2,0,1,2,1,2,1,2=\psi(\Omega_3^\Omega\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,0,1,2,0,1,2,1,2,2=\psi(\Omega_3^\Omega\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,0,1,2,0,1,2,1,2,3,3=\psi(\Omega_3^\Omega\times\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,0,1,2,0,1,2,1,2,3,3,1,2,3=\psi(\Omega_3^\Omega\times\psi_1(\Omega_3^{\Omega_\Omega}))</math> * <math>0,1,2,2,0,1,2,0,1,2,2=\psi(\Omega_3^\Omega\times\Omega_2)</math> * <math>0,1,2,2,0,1,2,1=\psi(\Omega_3^\Omega\times\Omega_2\times\omega)</math> * <math>0,1,2,2,0,1,2,1,1,2=\psi(\Omega_3^\Omega\times\psi_2(0))</math> * <math>0,1,2,2,0,1,2,1,1,2,0,1,2,2=\psi(\Omega_3^\Omega\times\psi_2(\Omega_2))</math> * <math>0,1,2,2,0,1,2,1,1,2,1=\psi(\Omega_3^\Omega\times\psi_2(\Omega_2\times\omega))</math> * <math>0,1,2,2,0,1,2,1,1,2,1,2=\psi(\Omega_3^\Omega\times\psi_2(\Omega_3))</math> * <math>0,1,2,2,0,1,2,1,2=\psi(\Omega_3^\Omega\times\psi_2(\Omega_3^\Omega))</math> * <math>0,1,2,2,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_3^\Omega\times\psi_2(\Omega_3^\Omega\times2))</math> * <math>0,1,2,2,0,1,2,1,2,2=\psi(\Omega_3^{\Omega+1})</math> * <math>0,1,2,2,0,1,2,1,2,3,1,2,2,3=\psi(\Omega_3^{\psi_2(0)})</math> * <math>0,1,2,2,0,1,2,1,2,3,3=\psi(\Omega_3^{\psi_2(\Omega_2^{\Omega_2})})</math> * <math>0,1,2,2,0,1,2,2=\psi(\Omega_3^{\Omega_2})</math> * <math>0,1,2,2,0,1,2,2=\psi(\Omega_3^{\Omega_2})</math> * <math>0,1,2,2,1=\psi(\Omega_3^{\Omega_2}\times\omega)</math> * <math>0,1,2,2,1,2=\psi(\Omega_3^{\Omega_2}\times\Omega)</math> * <math>0,1,2,2,1,2,0,1,2,2,1,1,2=\psi(\Omega_3^{\Omega_2}\times\psi_1(0))</math> * <math>0,1,2,2,1,2,0,1,2,2,1,2=\psi(\Omega_3^{\Omega_2}\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,1,2,1,2,2=\psi(\Omega_3^{\Omega_2}\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,1,2,1,2,3,3=\psi(\Omega_3^{\Omega_2}\times\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,1,2,1,2,3,3,1,2,3=\psi(\Omega_3^{\Omega_2}\times\psi_1(\Omega_3^{\Omega}))</math> * <math>0,1,2,2,1,2,1,2,3,3,1,2,3,3=\psi(\Omega_3^{\Omega_2}\times\psi_1(\Omega_3^{\Omega_2}))</math> * <math>0,1,2,2,1,2,1,2,3,3,2=\psi(\Omega_3^{\Omega_2}\times\psi_1(\Omega_3^{\Omega_2}\times\omega))</math> * <math>0,1,2,2,1,2,2=\psi(\Omega_3^{\Omega_2}\times\Omega_2)</math> * <math>0,1,2,2,1,2,2,0,1,2,2=\psi(\Omega_3^{\Omega_2}\times\Omega_2+\Omega_3^{\Omega_2})</math> * <math>0,1,2,2,1,2,2,0,1,2,2,0,1,2,2,1,2,2=\psi(\Omega_3^{\Omega_2}\times\Omega_2\times2)</math> * <math>0,1,2,2,1,2,2,0,1,2,2,1=\psi(\Omega_3^{\Omega_2}\times\Omega_2\times\omega)</math> * <math>0,1,2,2,1,2,2,0,1,2,2,1,1,2=\psi(\Omega_3^{\Omega_2}\times\psi_2(0))</math> * <math>0,1,2,2,1,2,2,0,1,2,2,1,2=\psi(\Omega_3^{\Omega_2}\times\psi_2(\Omega_3^\Omega))</math> * <math>0,1,2,2,1,2,2,0,1,2,2,1,2,2=\psi(\Omega_3^{\Omega_2}\times\psi_2(\Omega_3^{\Omega_2}))</math> * <math>0,1,2,2,1,2,2,1=\psi(\Omega_3^{\Omega_2}\times\psi_2(\Omega_3^{\Omega_2}\times\Omega))</math> * <math>0,1,2,2,1,2,2,1,2,2=\psi(\Omega_3^{\Omega_2}\times\psi_2(\Omega_3^{\Omega_2}\times\Omega_2))</math> * <math>0,1,2,2,1,2,2,2=\psi(\Omega_3^{\Omega_2+1})</math> * <math>0,1,2,2,2=\psi(\Omega_3^{\Omega_3})</math> * <math>0,1,2,2,3=\psi(\Omega_\omega)=\mathrm{BO}</math> === Part 20 === * <math>0,1,2,2,3,0,1,0,1,2=\psi(\Omega_\omega+\Omega^\Omega)</math> * <math>0,1,2,2,3,0,1,0,1,2,0,1,1,2=\psi(\Omega_\omega+\psi_1(0))</math> * <math>0,1,2,2,3,0,1,0,1,2,2=\psi(\Omega_\omega+\psi_1(\Omega_2^{\Omega_2}))</math> * <math>0,1,2,2,3,0,1,0,1,2,2,3=\psi(\Omega_\omega+\psi_1(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\omega)</math> * <math>0,1,2,2,3,0,1,1,0,1,2=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\Omega)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,0,1,1,2=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\psi_1(0))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,0,1,2=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,2=\psi(\Omega_\omega+\psi_1(\Omega_\omega)\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4=\psi(\Omega_\omega+\psi_1(\Omega_\omega)^2)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,1,2=\psi(\Omega_\omega+\psi_1(\Omega_\omega+1))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,1,2,1,2=\psi(\Omega_\omega+\Omega_2)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2=\psi(\Omega_\omega+\Omega_2^\Omega)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,0,1,2=\psi(\Omega_\omega+\Omega_2^\Omega\times2)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,0,1,2,1,2,3,3,4=\psi(\Omega_\omega+\Omega_2^\Omega\times\psi(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1=\psi(\Omega_\omega+\Omega_2^\Omega\times\psi(\Omega_\omega)\times\omega)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1,1,2=\psi(\Omega_\omega+\Omega_2^\Omega\times\psi(\Omega_\omega+1))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1,2=\psi(\Omega_\omega+\Omega_2^\Omega\times\psi(\Omega_\omega+\Omega_2^\Omega))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1,2,0,1,2,1,2,3,3,4=\psi(\Omega_\omega+\Omega_2^\Omega\times\psi(\Omega_\omega+\Omega_2^\Omega\times\psi_1(\Omega_\omega)))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1,2,2=\psi(\Omega_\omega+\Omega_2^{\Omega+1})</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1,2,3,1,2,2,3=\psi(\Omega_\omega+\Omega_2^{\psi_1(0)})</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,2,1,2,3,3,4=\psi(\Omega_\omega+\Omega_2^{\psi_1(\Omega_\omega)})</math> * <math>0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,1=\psi(\Omega_\omega+\Omega_2^{\psi_1(\Omega_\omega)}\times\omega)</math> * <math>0,1,2,2,3,0,1,1,0,1,2,2=\psi(\Omega_\omega+\Omega_2^{\Omega_2})</math> * <math>0,1,2,2,3,0,1,1,0,1,2,2,0,1,1,2=\psi(\Omega_\omega+\psi_2(0))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,2,0,1,1,2,1,2=\psi(\Omega_\omega+\psi_2(\Omega_2))</math> * <math>0,1,2,2,3,0,1,1,0,1,2,2,3=\psi(\Omega_\omega+\psi_2(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1,1=\psi(\Omega_\omega+\psi_2(\Omega_\omega)\times\omega)</math> * <math>0,1,2,2,3,0,1,1,2=\psi(\Omega_\omega\times2)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,0,1,2,2,3=\psi(\Omega_\omega\times2+\psi_1(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,0,1,2,2,3,0,1,1,2=\psi(\Omega_\omega\times2+\psi_1(\Omega_\omega\times2))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1=\psi(\Omega_\omega\times2+\psi_1(\Omega_\omega\times2)\times\omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1,0,1,2,2=\psi(\Omega_\omega\times2+\psi_1(\Omega_\omega\times2)\times\Omega_2)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1,0,1,2,2,3=\psi(\Omega_\omega\times2+\psi_2(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1,0,1,2,2,3,0,1,1,2=\psi(\Omega_\omega\times2+\psi_2(\Omega_\omega\times2))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1,0,1,2,2,3,0,1,1,2,0,1,1=\psi(\Omega_\omega\times2+\psi_2(\Omega_\omega\times2)+\psi_1(\Omega_\omega\times2+\psi_2(\Omega_\omega\times2))\times\omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1,0,1,2,2,3,0,1,1,2=\psi(\Omega_\omega\times2+\psi_2(\Omega_\omega\times2))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,1,2=\psi(\Omega_\omega\times3)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2=\psi(\Omega_\omega\times\Omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,0,1,2,2,3,0,1,1,0,1,2=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega)\times\Omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega)^2)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,0,1,2,2,3,0,1,1,0,1,2,1,2,3,3,4,0,1,1,2,1,2=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega+\Omega_2))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,0,1,2,2,3,0,1,1,0,1,2,2,3=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega+\psi_2(\Omega_\omega)))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,0,1,2,2,3,0,1,1,2=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times2))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,0,1,2,2,3,0,1,1,2,0,1,2=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1=\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega)\times\omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1,0,1,2,2=\psi(\Omega_\omega\times\Omega+\Omega_2)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1,0,1,2,2,3=\psi(\Omega_\omega\times\Omega+\psi_2(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1,2=\psi(\Omega_\omega\times\Omega+\Omega_\omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_\omega\times\Omega\times\omega)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1,2,1,0,1,2=\psi(\Omega_\omega\times\Omega^2)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_\omega\times\psi_1(0))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,0,1,2=\psi(\Omega_\omega\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,1=\psi(\Omega_\omega\times\psi_1(\Omega_2^\Omega\times\omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,1,2,3,3,4=\psi(\Omega_\omega\times\psi_1(\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,2=\psi(\Omega_\omega\times\Omega_2)</math> * <math>0,1,2,2,3,0,1,1,2,0,1,2,2,3=\psi(\Omega_\omega^2)</math> * <math>0,1,2,2,3,0,1,1,2,1=\psi(\Omega_\omega^2\times\omega)</math> * <math>0,1,2,2,3,0,1,1,2,1,0,1,2,2,3=\psi(\Omega_\omega^3)</math> * <math>0,1,2,2,3,0,1,1,2,1,1,2=\psi(\psi_\omega(0))</math> * <math>0,1,2,2,3,0,1,1,2,1,1,2,0,1,1,2,0,1,2,2,3,0,1,1,2,1,1,2=\psi(\psi_\omega(0)\times2)</math> * <math>0,1,2,2,3,0,1,1,2,1,1,2,0,1,1,2,1,1,2=\psi(\psi_\omega(1))</math> * <math>0,1,2,2,3,0,1,1,2,1,2=\psi(\Omega_{\omega+1})</math> * <math>0,1,2,2,3,0,1,1,2,2=\psi(\Omega_{\omega+1}^\omega)</math> * <math>0,1,2,2,3,0,1,2=\psi(\Omega_{\omega+1}^\Omega)</math> * <math>0,1,2,2,3,0,1,2,0,1,0,1,2,2,3,0,1,2=\psi(\Omega_{\omega+1}^\Omega+\psi_1(\Omega_{\omega+1}^\Omega))</math> * <math>0,1,2,2,3,0,1,2,0,1,1=\psi(\Omega_{\omega+1}^\Omega+\psi_1(\Omega_{\omega+1}^\Omega)\times\omega)</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2=\psi(\Omega_{\omega+1}^\Omega+\Omega_\omega)</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,0,1,2,2,3,0,1,2=\psi(\Omega_{\omega+1}^\Omega\times2)</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,1=\psi(\Omega_{\omega+1}^\Omega\times\omega)</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,1,0,1,2,2,3=\psi(\Omega_{\omega+1}^{\Omega}\times\Omega_\omega)</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,1,0,1,2,2,3,0,1,1,2,1,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(0))</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,1,0,1,2,2,3,0,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega))</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,1,1=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega)^\omega)</math> * <math>0,1,2,2,3,0,1,2,0,1,1,2,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega+\Omega_{\omega+1}))</math> * <math>0,1,2,2,3,0,1,2,0,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega\times2))</math> * <math>0,1,2,2,3,0,1,2,0,1,2,2,3=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega\times\Omega_\omega))</math> * <math>0,1,2,2,3,0,1,2,1=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega\times\Omega_\omega\times\omega))</math> * <math>0,1,2,2,3,0,1,2,1,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega\times\psi_\omega(0)))</math> * <math>0,1,2,2,3,0,1,2,1,1,2,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega\times\psi_\omega(\Omega_{\omega+1})))</math> * <math>0,1,2,2,3,0,1,2,1,2=\psi(\Omega_{\omega+1}^{\Omega}\times\psi_\omega(\Omega_{\omega+1}^\Omega\times\psi_\omega(\Omega_{\omega+1}^\Omega)))</math> * <math>0,1,2,2,3,0,1,2,1,2,2=\psi(\Omega_{\omega+1}^{\Omega+1})</math> * <math>0,1,2,2,3,0,1,2,1,2,3,1,2,2,3=\psi(\Omega_{\omega+1}^{\psi_1(0)})</math> * <math>0,1,2,2,3,0,1,2,1,2,3,3,4=\psi(\Omega_{\omega+1}^{\psi_1(\Omega_\omega)})</math> * <math>0,1,2,2,3,0,1,2,2=\psi(\Omega_{\omega+1}^{\Omega_2})</math> * <math>0,1,2,2,3,0,1,2,2,3=\psi(\Omega_{\omega+1}^{\Omega_\omega})</math> * <math>0,1,2,2,3,1=\psi(\Omega_{\omega+1}^{\Omega_\omega}\times\omega)</math> * <math>0,1,2,2,3,1,2=\psi(\Omega_{\omega+1}^{\Omega_\omega}\times\Omega)</math> * <math>0,1,2,2,3,1,2,2=\psi(\Omega_{\omega+1}^{\Omega_\omega}\times\Omega_2)</math> * <math>0,1,2,2,3,1,2,2,3=\psi(\Omega_{\omega+1}^{\Omega_\omega}\times\Omega_\omega)</math> * <math>0,1,2,2,3,1,2,2,3,2=\psi(\Omega_{\omega+1}^{\Omega_\omega+1})</math> * <math>0,1,2,2,3,1,2,3=\psi(\Omega_{\omega+1}^{\Omega_\omega+\Omega})</math> * <math>0,1,2,2,3,1,2,3,1,2,3=\psi(\Omega_{\omega+1}^{\Omega_\omega+\psi_1(\Omega_2^\Omega)})</math> * <math>0,1,2,2,3,1,2,3,2,3=\psi(\Omega_{\omega+1}^{\Omega_\omega+\psi_1(\Omega_2^\Omega\times\Omega)})</math> * <math>0,1,2,2,3,1,2,3,2,3,4,4,5=\psi(\Omega_{\omega+1}^{\Omega_\omega+\psi_1(\Omega_\omega)})</math> * <math>0,1,2,2,3,1,2,3,3=\psi(\Omega_{\omega+1}^{\Omega_\omega+\Omega_2})</math> * <math>0,1,2,2,3,1,2,3,3,4=\psi(\Omega_{\omega+1}^{\Omega_\omega\times2})</math> * <math>0,1,2,2,3,2=\psi(\Omega_{\omega+1}^{\Omega_{\omega+1}})</math> * <math>0,1,2,2,3,2,2=\psi(\Omega_{\omega+2}^{\Omega_{\omega+2}})</math> * <math>0,1,2,2,3,2,2,3=\psi(\Omega_{\omega\times2})</math> * <math>0,1,2,2,3,2,3=\psi(\Omega_{\omega^2})</math> * <math>0,1,2,2,3,4=\psi(\Omega_{\psi(\Omega^\Omega)})</math> * <math>0,1,2,2,3,4,4,5=\psi(\Omega_{\psi(\Omega_\omega)})</math> * <math>0,1,2,3=\psi(\Omega_{\Omega})</math> === Part 21 === * <math>0,1,2,3,0,1,0,1,2,3=\psi(\Omega_\Omega+\psi_1(\Omega_\Omega))</math> * <math>0,1,2,3,0,1,1=\psi(\Omega_\Omega+\psi_1(\Omega_\Omega)\times\omega)</math> * <math>0,1,2,3,0,1,1,0,1,2,3=\psi(\Omega_\Omega+\psi_2(\Omega_\Omega))</math> * <math>0,1,2,3,0,1,1,2=\psi(\Omega_\Omega+\Omega_\omega)</math> * <math>0,1,2,3,0,1,1,2,1,1,2=\psi(\Omega_\Omega+\Omega_{\omega\times2})</math> * <math>0,1,2,3,0,1,2=\psi(\Omega_\Omega\times2)</math> * <math>0,1,2,3,0,1,2,0,1,1=\psi(\Omega_\Omega\times2+\psi_1(\Omega_\Omega\times2)\times\omega)</math> * <math>0,1,2,3,0,1,2,0,1,2=\psi(\Omega_\Omega\times3)</math> * <math>0,1,2,3,0,1,2,0,1,2,1,2=\psi(\Omega_\Omega\times\Omega)</math> * <math>0,1,2,3,0,1,2,0,1,2,2=\psi(\Omega_\Omega\times\Omega_2)</math> * <math>0,1,2,3,0,1,2,0,1,2,3=\psi(\Omega_\Omega^2)</math> * <math>0,1,2,3,0,1,2,0,1,2,3,0,1,2=\psi(\Omega_\Omega^2+\Omega_\Omega)</math> * <math>0,1,2,3,0,1,2,1=\psi(\Omega_\Omega^2\times\omega)</math> * <math>0,1,2,3,0,1,2,1,0,1,2,0,1,2,3=\psi(\Omega_\Omega^2\times\omega+\Omega_\Omega^2)</math> * <math>0,1,2,3,0,1,2,1,0,1,2,0,1,2,3,0,1,2,1=\psi(\Omega_\Omega^2\times\omega\times2)</math> * <math>0,1,2,3,0,1,2,1,0,1,2,1=\psi(\Omega_\Omega^2\times\omega^2)</math> * <math>0,1,2,3,0,1,2,1,0,1,2,3=\psi(\Omega_\Omega^3)</math> * <math>0,1,2,3,0,1,2,1,0,1,2,3,0,1,2,1=\psi(\Omega_\Omega^3\times\omega)</math> * <math>0,1,2,3,0,1,2,1,1=\psi(\Omega_\Omega^\omega)</math> * <math>0,1,2,3,0,1,2,1,1,0,1,2,1=\psi(\Omega_\Omega^\omega\times\omega)</math> * <math>0,1,2,3,0,1,2,1,1,0,1,2,1,1=\psi(\Omega_\Omega^{\omega\times2})</math> * <math>0,1,2,3,0,1,2,1,1,0,1,2,3=\psi(\Omega_\Omega^{\Omega_\Omega})</math> * <math>0,1,2,3,0,1,2,1,1,2=\psi(\psi_{\Omega_{\Omega+1}}(0))</math> * <math>0,1,2,3,0,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega})</math> * <math>0,1,2,3,0,1,2,1,2,0,1,2=\psi(\Omega_{\Omega+1}^{\Omega}+\Omega_\Omega)</math> * <math>0,1,2,3,0,1,2,1,2,0,1,2,1=\psi(\Omega_{\Omega+1}^{\Omega}+\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega})\times\omega)</math> * <math>0,1,2,3,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_{\Omega+1}^{\Omega}+\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega}+1))</math> * <math>0,1,2,3,0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega}+\Omega_{\Omega+1})</math> * <math>0,1,2,3,0,1,2,1,2,0,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega}\times2)</math> * <math>0,1,2,3,0,1,2,1,2,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega}\times\Omega_\Omega)</math> * <math>0,1,2,3,0,1,2,1,2,1=\psi(\Omega_{\Omega+1}^{\Omega}\times\Omega_\Omega\times\omega)</math> * <math>0,1,2,3,0,1,2,1,2,1,1,2=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(0))</math> * <math>0,1,2,3,0,1,2,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega}))</math> * <math>0,1,2,3,0,1,2,1,2,1,2,0,1,2,1,2,1=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega})\times\omega)</math> * <math>0,1,2,3,0,1,2,1,2,1,2,0,1,2,1,2,1,1,2=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega}+1))</math> * <math>0,1,2,3,0,1,2,1,2,1,2,0,1,2,1,2,1,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega}+\Omega_{\Omega+1}))</math> * <math>0,1,2,3,0,1,2,1,2,1,2,0,1,2,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega}\times2))</math> * <math>0,1,2,3,0,1,2,1,2,1,2,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega}\times\Omega_\Omega))</math> * <math>0,1,2,3,0,1,2,1,2,2=\psi(\Omega_{\Omega+1}^{\Omega+1})</math> * <math>0,1,2,3,0,1,2,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega\times2})</math> * <math>0,1,2,3,0,1,2,2=\psi(\Omega_{\Omega+1}^{\Omega_2})</math> * <math>0,1,2,3,0,1,2,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\omega})</math> * <math>0,1,2,3,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega})</math> * <math>0,1,2,3,0,1,2,3,0,1,0,1,2,3,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}+\psi_1(\Omega_{\Omega+1}^{\Omega_\Omega}))</math> * <math>0,1,2,3,0,1,2,3,0,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}+\Omega_{\Omega})</math> * <math>0,1,2,3,0,1,2,3,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times2)</math> * <math>0,1,2,3,1=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\omega)</math> * <math>0,1,2,3,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega)</math> * <math>0,1,2,3,1,2,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega+\Omega_{\Omega+1}^{\Omega_\Omega})</math> * <math>0,1,2,3,1,2,0,1,2,3,1,1,2,0,1,2,3,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega))</math> * <math>0,1,2,3,1,2,0,1,2,3,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_2^\Omega))</math> * <math>0,1,2,3,1,2,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_2^\Omega\times\Omega))</math> * <math>0,1,2,3,1,2,1,2,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_2^{\Omega+1}))</math> * <math>0,1,2,3,1,2,1,2,3,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_\omega))</math> * <math>0,1,2,3,1,2,1,2,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_\Omega))</math> * <math>0,1,2,3,1,2,1,2,3,4,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_\Omega\times2))</math> * <math>0,1,2,3,1,2,1,2,3,4,1,2,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_1(\Omega_{\Omega+1}^{\Omega_\Omega}))</math> === Part 22 === * <math>0,1,2,3,1,2,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_2)</math> * <math>0,1,2,3,1,2,2,1,2,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_2(\Omega_{3}^{\Omega_2}\times\Omega_2))</math> * <math>0,1,2,3,1,2,2,1,2,2,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_2(\Omega_{3}^{\Omega_2+1}))</math> * <math>0,1,2,3,1,2,2,1,2,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_2(\Omega_{\Omega}))</math> * <math>0,1,2,3,1,2,2,1,2,3,4,1,2,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_2(\Omega_{\Omega+1}^{\Omega_\Omega}))</math> * <math>0,1,2,3,1,2,2,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_3)</math> * <math>0,1,2,3,1,2,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\omega)</math> * <math>0,1,2,3,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\Omega)</math> * <math>0,1,2,3,1,2,3,0,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\Omega+\Omega_\Omega)</math> * <math>0,1,2,3,1,2,3,0,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\Omega+\Omega_{\Omega+1}^{\Omega_\Omega})</math> * <math>0,1,2,3,1,2,3,0,1,2,3,0,1,2,3,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\Omega\times2)</math> * <math>0,1,2,3,1,2,3,0,1,2,3,1,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(0))</math> * <math>0,1,2,3,1,2,3,0,1,2,3,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^\Omega))</math> * <math>0,1,2,3,1,2,3,0,1,2,3,1,2,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega_2}))</math> * <math>0,1,2,3,1,2,3,0,1,2,3,1,2,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega_\omega}))</math> * <math>0,1,2,3,1,2,3,0,1,2,3,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega_\Omega}))</math> * <math>0,1,2,3,1,2,3,1=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega_\Omega}\times\omega))</math> * <math>0,1,2,3,1,2,3,1,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega))</math> * <math>0,1,2,3,1,2,3,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega}\times\psi_{\Omega_{\Omega+1}}(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\Omega))</math> * <math>0,1,2,3,1,2,3,2=\psi(\Omega_{\Omega+1}^{\Omega_\Omega+1})</math> * <math>0,1,2,3,1,2,3,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega+\Omega})</math> * <math>0,1,2,3,1,2,3,2,3,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega+\Omega_2})</math> * <math>0,1,2,3,1,2,3,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega+\Omega_2})</math> * <math>0,1,2,3,1,2,3,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega+\Omega_\omega})</math> * <math>0,1,2,3,1,2,3,4=\psi(\Omega_{\Omega+1}^{\Omega_\Omega\times2})</math> * <math>0,1,2,3,1,2,3,4,1,2,3=\psi(\Omega_{\Omega+1}^{\Omega_\Omega\times3})</math> * <math>0,1,2,3,1,2,3,4,1,2,3,2,2,3=\psi(\Omega_{\Omega+1}^{\psi_{\Omega_{\Omega+1}}(0)})</math> * <math>0,1,2,3,2=\psi(\Omega_{\Omega+1}^{\Omega_{\Omega+1}})</math> * <math>0,1,2,3,2,2=\psi(\Omega_{\Omega+2}^{\Omega_{\Omega+2}})</math> * <math>0,1,2,3,2,2,3=\psi(\Omega_{\Omega+\omega})</math> * <math>0,1,2,3,2,3=\psi(\Omega_{\Omega\times2})</math> * <math>0,1,2,3,2,3,3=\psi(\Omega_{\Omega\times\omega})</math> * <math>0,1,2,3,2,3,4=\psi(\Omega_{\Omega^2})</math> * <math>0,1,2,3,2,3,4=\psi(\Omega_{\Omega^2})</math> * <math>0,1,2,3,2,3,4,2,3=\psi(\Omega_{\Omega^2+\Omega})</math> * <math>0,1,2,3,2,3,4,2,3,2,3,4=\psi(\Omega_{\Omega^2\times2})</math> * <math>0,1,2,3,2,3,4,2,3,3=\psi(\Omega_{\Omega^2\times\omega})</math> * <math>0,1,2,3,2,3,4,2,3,3,2,3,4=\psi(\Omega_{\Omega^3})</math> * <math>0,1,2,3,2,3,4,2,3,3,4=\psi(\Omega_{\psi_1(0)})</math> * <math>0,1,2,3,2,3,4,2,3,4=\psi(\Omega_{\psi_1(\Omega_2^\Omega)})</math> * <math>0,1,2,3,2,3,4,3,4,4=\psi(\Omega_{\psi_1(\Omega_2^{\Omega+1})})</math> * <math>0,1,2,3,2,3,4,4,5=\psi(\Omega_{\psi_1(\Omega_\omega)})</math> * <math>0,1,2,3,2,3,4,5=\psi(\Omega_{\psi_1(\Omega_\Omega)})</math> * <math>0,1,2,3,2,3,4,5,2,3,4,5=\psi(\Omega_{\psi_1(\Omega_{\Omega+1}^{\Omega_\Omega})})</math> * <math>0,1,2,3,2,3,4,5,3,4=\psi(\Omega_{\psi_1(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega)})</math> * <math>0,1,2,3,2,3,4,5,3,4,5=\psi(\Omega_{\psi_1(\Omega_{\Omega+1}^{\Omega_\Omega}\times\Omega_\Omega)})</math> * <math>0,1,2,3,2,3,4,5,4=\psi(\Omega_{\psi_1(\Omega_{\Omega+1}^{\Omega_{\Omega+1}})})</math> * <math>0,1,2,3,2,3,4,5,4,5,6,7=\psi(\Omega_{\psi_1(\Omega_{\psi_1(\Omega_\Omega)})})</math> * <math>0,1,2,3,3=\psi(\Omega_{\Omega_2})</math> * <math>0,1,2,3,3,2,3=\psi(\Omega_{\Omega_2+1})</math> * <math>0,1,2,3,3,2,3,2,3,4,5=\psi(\Omega_{\Omega_2+\psi_1(\Omega_\Omega)})</math> * <math>0,1,2,3,3,2,3,2,3,4,5,5=\psi(\Omega_{\Omega_2+\psi_1(\Omega_{\Omega_2})})</math> * <math>0,1,2,3,3,2,3,3=\psi(\Omega_{\Omega_2\times2})</math> * <math>0,1,2,3,3,2,3,3,3=\psi(\Omega_{\Omega_2\times\omega})</math> * <math>0,1,2,3,3,2,3,4=\psi(\Omega_{\Omega_2\times\Omega})</math> * <math>0,1,2,3,3,2,3,4,4=\psi(\Omega_{\Omega_2^2})</math> * <math>0,1,2,3,3,2,3,4,4,2,3,3,4=\psi(\Omega_{\psi_2(0)})</math> * <math>0,1,2,3,3,2,3,4,4,5=\psi(\Omega_{\psi_2(\Omega_\omega)})</math> * <math>0,1,2,3,3,2,3,4,5=\psi(\Omega_{\psi_2(\Omega_\Omega)})</math> * <math>0,1,2,3,3,3=\psi(\Omega_{\Omega_3})</math> * <math>0,1,2,3,3,4=\psi(\Omega_{\Omega_\omega})</math> * <math>0,1,2,3,4=\psi(\Omega_{\Omega_\Omega})</math> * <math>0,1,2,3,4,2,3,4,5,2,3,4,3,3,2,3,4,5,0,1,2,3,1,2,3,4,1,2,3,2,2,1,2,3,4,1,1,0,1,2,3,4,2,3,4,5,2,3,4,3,3,2,3,4,5=\psi(\Omega_{\Omega_\Omega^{\Omega_\Omega}}^{\Omega_{\Omega_\Omega^{\Omega_\Omega}}})</math> * <math>0,1,2,3,4,5,\cdots=\psi(\psi_I(0))=\mathrm{EBO}</math> [[分类:分析]]
返回
SSS 分析
。
查看“︁SSS 分析”︁的源代码
来自Googology Wiki