打开/关闭搜索
搜索
打开/关闭菜单
230
68
68
2794
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁PPS分析Part2”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
PPS分析Part2
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
{| class="wikitable" ! [[PPS]] !! [[康托范式]] |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,0,3,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,9)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,9,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,9,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,9,0,16,9,0,0,9,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega^\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,10)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega^{\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,10,9,0,0,10)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega^{\omega+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega^{\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\omega^{\omega^{\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,0,3,0,17,16,0,20)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,0,3,0,20,19,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,0,3,0,20,19,0,23,19)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}\times3}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,9)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,9,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega^{\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,13,9,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega^{\omega+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega^{\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega^{\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,15,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,15,0,19,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,15,0,19,15,0,0,15,0,25)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,15,0,19,15,0,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+\omega^{\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,15,0,19,15,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,16)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,14,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,14,13,0,17)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,14,13,0,17,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,14,13,0,17,13,0,20)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,14,14)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,14,14,3,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,0,4,3,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,0,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,0,21,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,0,22,21,0,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\omega+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,25)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,25,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\varepsilon_0+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,21,0,25,21,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22,3,0,3,0,28,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\varepsilon_0+1}}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22,3,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\varepsilon_0+1}+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22,3,0,22,3,0,27)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\varepsilon_0+1}+\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22,3,0,22,3,0,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22,3,0,22,3,0,29,0,22,3,0,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}+\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,3,0,22,22,3,0,22,3,0,29,27)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,0,4,3,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,3,0,34,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}+\omega^{\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,3,0,34,34,3,0,34,3,0,41,39)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}+\omega^{\omega^{\varepsilon_0+1}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,3,0,34,34,3,0,34,3,0,41,39,3,0,0,3,0,48,0,3,0,52,52,3,0,52,3,0,59,57)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}+\omega^{\omega^{\varepsilon_0+1}\times2}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,3,0,34,34,3,0,34,3,0,41,39,3,0,0,3,0,48,0,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}+\omega^{\omega^{\varepsilon_0+1}\times2+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,3,0,34,34,3,0,34,3,0,41,39,3,0,0,3,0,48,0,34,3,0,53)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}+\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,3,0,34,34,3,0,34,3,0,41,39,3,0,0,3,0,48,0,34,3,0,53,51)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,33)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3+\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35,33)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times4}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35,33,3,0,0,3,0,42,0,3,0,46,46,3,0,46,3,0,53,51)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times4}+\omega^{\omega^{\varepsilon_0+1}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35,33,3,0,0,3,0,42,0,3,0,46,46,3,0,46,3,0,53,51,3,0,0,3,0,60,0,46,3,0,65,63)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times4}+\omega^{\omega^{\varepsilon_0+1}\times3}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35,33,3,0,0,3,0,42,0,3,0,46,46,3,0,46,3,0,53,51,3,0,0,3,0,60,0,46,3,0,65,63,3,0,0,3,0,72,0,46,3,0,77,75)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times4}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35,33,3,0,0,3,0,42,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times4+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4,3,0,23,21,3,0,0,3,0,30,0,4,3,0,35,33,3,0,0,3,0,42,0,4,3,0,47,45)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+1}\times5}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,28,0,32)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34,3,0,0,3,0,43,0,3,0,47,47,3,0,47,3,0,54,52)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}\times2}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34,3,0,0,3,0,43,0,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}\times2+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34,3,0,0,3,0,43,0,29,3,0,48)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34,3,0,0,3,0,43,0,29,3,0,48,46)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}+\omega^{\omega^{\varepsilon_0+1}\times3}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34,3,0,0,3,0,43,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,3,0,29,29,3,0,29,3,0,36,34,3,0,0,3,0,43,34,3,0,0,3,0,50,0,3,0,54,54,3,0,54,3,0,61,59,3,0,0,3,0,68,59)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}}\times3}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,4,3,0,30,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}+\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,4,3,0,30,28,3,0,0,3,0,37,0,4,3,0,42,40)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}+\omega^{\varepsilon_0+1}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,4,3,0,30,28,3,0,0,3,0,37,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,0,4,3,0,30,28,3,0,0,3,0,37,28,3,0,0,3,0,44,0,4,3,0,49,47,3,0,0,3,0,56,47)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+2}\times3}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+3}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,0,4,3,0,21,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega}+\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,0,4,3,0,21,19,3,0,0,3,0,28,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega}+\omega^{\varepsilon_0+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,0,4,3,0,21,19,3,0,0,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega}\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,3,0,23,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,3,0,23,9,3,0,0,3,0,30,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega+3}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,3,0,23,9,3,0,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,3,0,23,9,3,0,0,23,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega\times2+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,3,0,23,9,3,0,0,23,9,3,0,0,3,0,35,9,3,0,0,35,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega\times3+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,11,9,3,0,0,3,0,28,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^2+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,11,9,3,0,0,3,0,28,9,3,0,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^2+\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,11,9,3,0,0,3,0,28,9,3,0,0,28,9,3,0,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^2\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11,9,3,0,0,11,9,3,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^3}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,0,3,0,22,9,3,0,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega+\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,0,3,0,22,9,3,0,0,22,9,3,0,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega+\omega^2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,0,3,0,22,9,3,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^{\omega+1}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,0,11,9,3,0,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^{\omega\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,0,11,9,3,0,21,9,3,0,0,11,9,3,0,30)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^{\omega\times3}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^{\omega^2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,12,9,3,0,12,9,3,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^{\omega^3}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0+\omega^{\omega^\omega}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,3,0,20,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0\times2+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,3,0,20,9,3,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_0\times3}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11,9,3,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11,9,3,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+\omega}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11,9,3,0,21)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11,9,3,0,21,0,0,11,9,3,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times3}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,0,11,9,3,0,24)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\omega}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,0,11,9,3,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,0,11,9,3,0,26,0,0,11,9,3,0,33)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,0,11,9,3,0,26,0,24)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,12,9,3,0,0,0,11,9,3,0,31,0,29,9,3,0,0,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+2}\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,0,12,9,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+3}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+\omega}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,20)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12,9,3,0,20,0,12,9,3,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times3}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,0,12,9,3,0,31)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22,9,3,0,0,0,12,9,3,0,36,0,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22,9,3,0,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22,9,3,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+\omega}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22,9,3,0,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22,9,3,0,30)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12,9,3,0,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\varepsilon_0}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12,9,3,0,34,0,0,12,9,3,0,41)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\varepsilon_0\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12,9,3,0,34,0,32)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12,9,3,0,34,0,32,9,3,0,0,32)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12,9,3,0,34,0,32,9,3,0,40)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0\times2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23,3,0,0,12,9,3,0,34,0,33)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\varepsilon_0}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,26,9,3,0,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0\times2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,0,12,9,3,0,39,0,38)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}}\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,0,0,12,9,3,0,44,0,43,3,0,0,42)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}+1}\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,0,26,9,3,0,0,0,12,9,3,0,49,0,48,3,0,0,47,9,3,0,0,47)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+2}\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,0,26,9,3,0,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+3}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,36)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\omega}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,0,26,9,3,0,45)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,36)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+\omega^{\varepsilon_0+1}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,36,9,3,0,0,36)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+2}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,36,9,3,0,42)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+\omega}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,36,9,3,0,44)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times2}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,36,9,3,0,44,0,36,9,3,0,50)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0\times3}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,37)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,26,9,3,0,38,0,37,3,0,0,26,9,3,0,48,0,47)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}\times2}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,27)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,12,9,3,0,28,0,27,3,0,0,27,3,0,0,12,9,3,0,42,0,41,3,0,0,41)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18)</math> || <math>\varepsilon_{\varepsilon_1}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3)</math> || <math>\varepsilon_{\omega^{\varepsilon_1+1}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27)</math> || <math>\varepsilon_{\omega^{\varepsilon_1+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,0,3,0,31,31,3,0,31,3,0,38,36,3,0,41,0,40,3,0,45)</math> || <math>\varepsilon_{\omega^{\varepsilon_1\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_1+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_1+2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,0,4,3,0,31)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_1+\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,0,4,3,0,32)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_1+\varepsilon_0}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,0,4,3,0,32,30,3,0,35,0,34,3,0,39)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_1\times2}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_1+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,9,3,0,0,3,0,34,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_1+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,9,3,0,0,27)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_1+\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,9,3,0,30)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_1+\varepsilon_0}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,3,0,27,9,3,0,30,0,29,3,0,34)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_1\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_1+1}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,0,11,9,3,0,28,0,27,3,0,32)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_1\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_1+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,12,9,3,0,27,0,26,3,0,31)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_1\times2}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\varepsilon_1+1}}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,13,3,0,25)</math> || <math>\varepsilon_{\varepsilon_2}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,13,3,0,25,3,0,0,13,3,0,32)</math> || <math>\varepsilon_{\varepsilon_3}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,18)</math> || <math>\varepsilon_{\varepsilon_\omega}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,19)</math> || <math>\varepsilon_{\varepsilon_{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,19,0,13,3,0,24)</math> || <math>\varepsilon_{\varepsilon_{\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,14)</math> || <math>\varepsilon_{\varepsilon_{\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,14,0,14)</math> || <math>\varepsilon_{\varepsilon_{\omega^{\omega^{\omega+1}+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15)</math> || <math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,0,3)</math> || <math>\varepsilon_{\omega^{\varepsilon_{\varepsilon_0}+1}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_{\varepsilon_0}+1}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,0,3,0,22,9)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,0,15,9,3,0,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\omega^2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\varepsilon_0}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\omega^{\varepsilon_0+1}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,17)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\omega^{\omega^{\varepsilon_0+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,17,3,0,0,17)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,17,3,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\varepsilon_1}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,17,3,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\varepsilon_{\omega^\omega}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\varepsilon_{\omega^{\omega+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,18,0,18,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+\varepsilon_{\omega^{\omega^{\omega+1}+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9,3,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}\times2}}}}</math> |- | <math>(0,1,0,2,0,4,4,3,0,4,3,0,11,10)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\varepsilon_{\varepsilon_0}+1}}}}}</math> |- [[分类:分析]]
返回
PPS分析Part2
。
查看“︁PPS分析Part2”︁的源代码
来自Googology Wiki