打开/关闭搜索
搜索
打开/关闭菜单
230
68
68
2794
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁PPS分析Part1”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
PPS分析Part1
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
{| class="wikitable" ! [[PPS]] !! [[康托范式]] |- | <math>(0,1)</math> || <math>\omega</math> |- | <math>(0,1,0,0,3)</math> || <math>\omega\times2</math> |- | <math>(0,1,0,0,3,0,0,6)</math> || <math>\omega\times3</math> |- | <math>(0,1,0,0,3,0,0,6,0,0,9)</math> || <math>\omega\times4</math> |- | <math>(0,1,0,0,3,3)</math> || <math>\omega^2</math> |- | <math>(0,1,0,0,3,3,0,0,7)</math> || <math>\omega^2+\omega</math> |- | <math>(0,1,0,0,3,3,0,0,7,0,0,10)</math> || <math>\omega^2+\omega\times2</math> |- | <math>(0,1,0,0,3,3,0,0,7,7)</math> || <math>\omega^2\times2</math> |- | <math>(0,1,0,0,3,3,0,0,7,7,0,0,11,11)</math> || <math>\omega^2\times3</math> |- | <math>(0,1,0,0,3,3,3)</math> || <math>\omega^3</math> |- | <math>(0,1,0,0,3,3,3,0,0,8,8)</math> || <math>\omega^3+\omega^2</math> |- | <math>(0,1,0,0,3,3,3,0,0,8,8,8)</math> || <math>\omega^3\times2</math> |- | <math>(0,1,0,0,3,3,3,3)</math> || <math>\omega^4</math> |- | <math>(0,1,0,0,4)</math> || <math>\omega^\omega</math> |- | <math>(0,1,0,0,4,0,0,6)</math> || <math>\omega^\omega+\omega</math> |- | <math>(0,1,0,0,4,0,0,6,6)</math> || <math>\omega^\omega+\omega^2</math> |- | <math>(0,1,0,0,4,0,0,7)</math> || <math>\omega^\omega\times2</math> |- | <math>(0,1,0,0,4,0,0,7,0,0,9)</math> || <math>\omega^\omega\times2+\omega</math> |- | <math>(0,1,0,0,4,0,0,7,0,0,10)</math> || <math>\omega^\omega\times3</math> |- | <math>(0,1,0,1)</math> || <math>\omega^{\omega+1}</math> |- | <math>(0,1,0,1,0,0,5)</math> || <math>\omega^{\omega+1}+\omega</math> |- | <math>(0,1,0,1,0,0,5,0,0,8)</math> || <math>\omega^{\omega+1}+\omega\times2</math> |- | <math>(0,1,0,1,0,0,5,5)</math> || <math>\omega^{\omega+1}+\omega^2</math> |- | <math>(0,1,0,1,0,0,6)</math> || <math>\omega^{\omega+1}+\omega^\omega</math> |- | <math>(0,1,0,1,0,0,6,0,0,8)</math> || <math>\omega^{\omega+1}+\omega^\omega+\omega</math> |- | <math>(0,1,0,1,0,0,6,0,0,9)</math> || <math>\omega^{\omega+1}+\omega^\omega\times2</math> |- | <math>(0,1,0,1,0,0,6,0,6)</math> || <math>\omega^{\omega+1}\times2</math> |- | <math>(0,1,0,1,0,0,6,0,6,0,0,11,0,11)</math> || <math>\omega^{\omega+1}\times3</math> |- | <math>(0,1,0,1,0,1)</math> || <math>\omega^{\omega+2}</math> |- | <math>(0,1,0,1,0,1,0,0,8)</math> || <math>\omega^{\omega+2}+\omega^\omega</math> |- | <math>(0,1,0,1,0,1,0,0,8,0,8)</math> || <math>\omega^{\omega+2}+\omega^{\omega+1}</math> |- | <math>(0,1,0,1,0,1,0,0,8,0,8,0,8)</math> || <math>\omega^{\omega+2}\times2</math> |- | <math>(0,1,0,1,0,1,0,1)</math> || <math>\omega^{\omega+3}</math> |- | <math>(0,1,0,2)</math> || <math>\omega^{\omega\times2}</math> |- | <math>(0,1,0,2,0,0,0,6)</math> || <math>\omega^{\omega\times2}+\omega</math> |- | <math>(0,1,0,2,0,0,0,6,0,0,9)</math> || <math>\omega^{\omega\times2}+\omega2</math> |- | <math>(0,1,0,2,0,0,0,6,6)</math> || <math>\omega^{\omega\times2}+\omega^2</math> |- | <math>(0,1,0,2,0,0,0,7)</math> || <math>\omega^{\omega\times2}+\omega^\omega</math> |- | <math>(0,1,0,2,0,0,0,7,0,0,10)</math> || <math>\omega^{\omega\times2}+\omega^\omega\times2</math> |- | <math>(0,1,0,2,0,0,0,7,0,7)</math> || <math>\omega^{\omega\times2}+\omega^{\omega+1}</math> |- | <math>(0,1,0,2,0,0,0,7,0,7,0,7)</math> || <math>\omega^{\omega\times2}+\omega^{\omega+2}</math> |- | <math>(0,1,0,2,0,0,0,7,0,8)</math> || <math>\omega^{\omega\times2}\times2</math> |- | <math>(0,1,0,2,0,0,0,7,0,8,0,0,0,13)</math> || <math>\omega^{\omega\times2}\times2+\omega^\omega</math> |- | <math>(0,1,0,2,0,0,0,7,0,8,0,0,0,13,0,13)</math> || <math>\omega^{\omega\times2}\times2+\omega^{\omega+1}</math> |- | <math>(0,1,0,2,0,0,0,7,0,8,0,0,0,13,0,14)</math> || <math>\omega^{\omega\times2}\times3</math> |- | <math>(0,1,0,2,0,0,1)</math> || <math>\omega^{\omega\times2+1}</math> |- | <math>(0,1,0,2,0,0,1,0,0,0,10)</math> || <math>\omega^{\omega\times2+1}+\omega^\omega</math> |- | <math>(0,1,0,2,0,0,1,0,0,0,10,0,10)</math> || <math>\omega^{\omega\times2+1}+\omega^{\omega+1}</math> |- | <math>(0,1,0,2,0,0,1,0,0,0,10,0,11)</math> || <math>\omega^{\omega\times2+1}+\omega^{\omega\times2}</math> |- | <math>(0,1,0,2,0,0,1,0,0,0,10,0,11,0,0,10)</math> || <math>\omega^{\omega\times2+1}\times2</math> |- | <math>(0,1,0,2,0,0,1,0,0,1)</math> || <math>\omega^{\omega\times2+2}</math> |- | <math>(0,1,0,2,0,0,1,0,0,1,0,0,1)</math> || <math>\omega^{\omega\times2+3}</math> |- | <math>(0,1,0,2,0,0,1,0,6)</math> || <math>\omega^{\omega\times3}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,0,1)</math> || <math>\omega^{\omega\times3+1}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,0,1,0,11)</math> || <math>\omega^{\omega\times4}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,6)</math> || <math>\omega^{\omega^2}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,6,0,0,1)</math> || <math>\omega^{\omega^2+1}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,6,0,0,1,0,13)</math> || <math>\omega^{\omega^2+\omega}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,6,0,0,1,0,13,0,13)</math> || <math>\omega^{\omega^2\times2}</math> |- | <math>(0,1,0,2,0,0,1,0,6,0,6,0,6)</math> || <math>\omega^{\omega^3}</math> |- | <math>(0,1,0,2,0,0,1,0,7)</math> || <math>\omega^{\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,1,0,7,0,0,1)</math> || <math>\omega^{\omega^\omega+1}</math> |- | <math>(0,1,0,2,0,0,1,0,7,0,0,1,0,11)</math> || <math>\omega^{\omega^\omega+\omega}</math> |- | <math>(0,1,0,2,0,0,1,0,7,0,0,1,0,11,0,11)</math> || <math>\omega^{\omega^\omega+\omega^2}</math> |- | <math>(0,1,0,2,0,0,1,0,7,0,0,1,0,11,0,12)</math> || <math>\omega^{\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2)</math> || <math>\omega^{\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1)</math> || <math>\omega^{\omega^{\omega+1}+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,9)</math> || <math>\omega^{\omega^{\omega+1}+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,9,0,9)</math> || <math>\omega^{\omega^{\omega+1}+\omega^2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10)</math> || <math>\omega^{\omega^{\omega+1}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,0,1,0,15)</math> || <math>\omega^{\omega^{\omega+1}+\omega^\omega+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,0,1,0,16)</math> || <math>\omega^{\omega^{\omega+1}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9)</math> || <math>\omega^{\omega^{\omega+1}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,0,1,0,18)</math> || <math>\omega^{\omega^{\omega+1}\times2+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,0,1,0,19)</math> || <math>\omega^{\omega^{\omega+1}\times2+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,0,1,0,19,0,0,0,1,0,25)</math> || <math>\omega^{\omega^{\omega+1}\times2+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,0,1,0,19,0,0,18)</math> || <math>\omega^{\omega^{\omega+1}\times3}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9)</math> || <math>\omega^{\omega^{\omega+2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1)</math> || <math>\omega^{\omega^{\omega+2}+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,21)</math> || <math>\omega^{\omega^{\omega+2}+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22)</math> || <math>\omega^{\omega^{\omega+2}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22,0,0,0,1,0,28)</math> || <math>\omega^{\omega^{\omega+2}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22,0,0,21)</math> || <math>\omega^{\omega^{\omega+2}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22,0,0,21,0,0,0,1,0,31)</math> || <math>\omega^{\omega^{\omega+2}+\omega^{\omega+1}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22,0,0,21,0,0,0,1,0,31,0,0,30)</math> || <math>\omega^{\omega^{\omega+2}+\omega^{\omega+1}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22,0,0,21,0,0,21)</math> || <math>\omega^{\omega^{\omega+2}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,0,1,0,22,0,0,21,0,0,21,0,0,0,1,0,34,0,0,33,0,0,33)</math> || <math>\omega^{\omega^{\omega+2}\times3}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,0,9,0,0,9)</math> || <math>\omega^{\omega^{\omega+3}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,14)</math> || <math>\omega^{\omega^{\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,14,0,0,9)</math> || <math>\omega^{\omega^{\omega\times2+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,14,0,0,9,0,19)</math> || <math>\omega^{\omega^{\omega\times3}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,14,0,14)</math> || <math>\omega^{\omega^{\omega^2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,14,0,14,0,14)</math> || <math>\omega^{\omega^{\omega^3}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,15)</math> || <math>\omega^{\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,15,0,0,9)</math> || <math>\omega^{\omega^{\omega^\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,15,0,0,9,0,19)</math> || <math>\omega^{\omega^{\omega^\omega+\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,9,0,15,0,0,9,0,20)</math> || <math>\omega^{\omega^{\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,17)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,0,1)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,0,1,0,24)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,0,1,0,24,0,0,0,1,0,30)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega\times3}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,17)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,17,0,0,17)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega+2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,17,0,22)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,17,0,23)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,17,0,23,0,0,17,0,28)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,1,0,10,0,0,10,0,0,1,0,18,0,0,18)</math> || <math>\omega^{\omega^{\omega^{\omega+1}}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,0,1)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^\omega+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,0,1,0,18)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^\omega+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,0,1,0,19)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,12,0,17)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,12,0,18)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,12,0,18,0,0,12,0,23)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,21)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,22)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,22,0,0,0,1,0,28)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,22,0,0,21)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,22,0,0,21,0,26)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+\omega^{\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,22,0,0,21,0,27)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,0,1,0,22,0,0,22)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}+\omega^{\omega^{\omega+1}}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,0,0,1,0,25,0,0,25)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}\times2+\omega^{\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,0,0,1,0,25,0,0,25,0,0,24)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+1}\times3}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,0,12,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+3}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,20)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+\omega^\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,0,12,0,26)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+\omega^\omega+\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,0,12,0,27)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,0,12,0,27,0,0,0,12,0,33)</math> || <math>\omega^{\omega^{\omega^{\omega+1}+\omega^\omega\times3}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20)</math> || <math>\omega^{\omega^{\omega^{\omega+1}\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+1}\times2+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,0,12,0,30)</math> || <math>\omega^{\omega^{\omega^{\omega+1}\times2+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,0,12,0,30,0,0,0,12,0,36 )</math> || <math>\omega^{\omega^{\omega^{\omega+1}\times2+\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,0,12,0,30,0,0,29)</math> || <math>\omega^{\omega^{\omega^{\omega+1}\times3}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,0,12,0,30,0,0,29,0,0,0,12,0,39,0,0,38 )</math> || <math>\omega^{\omega^{\omega^{\omega+1}\times4}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,20)</math> || <math>\omega^{\omega^{\omega^{\omega+2}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,20,0,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega+2}+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,20,0,0,0,12,0,33,0,0,32)</math> || <math>\omega^{\omega^{\omega^{\omega+2}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,20,0,0,0,12,0,33,0,0,32,0,0,32)</math> || <math>\omega^{\omega^{\omega^{\omega+2}\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,0,20,0,0,20)</math> || <math>\omega^{\omega^{\omega^{\omega+3}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,25)</math> || <math>\omega^{\omega^{\omega^{\omega\times2}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,25,0,0,20)</math> || <math>\omega^{\omega^{\omega^{\omega\times2+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,25,0,0,20,0,30)</math> || <math>\omega^{\omega^{\omega^{\omega\times3}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,25,0,25)</math> || <math>\omega^{\omega^{\omega^{\omega^2}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,26)</math> || <math>\omega^{\omega^{\omega^{\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,20,0,26,0,0,20,0,31)</math> || <math>\omega^{\omega^{\omega^{\omega^\omega\times2}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}+1}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1,0,30)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1,0,30,0,0,29)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1,0,30,0,0,29,0,35)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}+\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1,0,30,0,0,30)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}+\omega^{\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1,0,30,0,0,30,0,0,29)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}+\omega^{\omega^{\omega+1}+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,0,1,0,30,0,0,30,0,0,29,0,38,0,0,38)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}+1}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,12,0,29)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,12,0,29,0,0,28)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,12,0,29,0,0,28,0,33)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega\times2}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,12,0,29,0,0,28,0,34)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,12,0,21,0,0,21,0,0,12,0,29,0,0,29)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}}\times2}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,13)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}+1}}}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,1,0,13,0,0,13,0,0,13,0,0,1,0,24,0,0,24,0,0,24)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}+1}}\times2}</math> |- | <math>(0,1,0,2,0,0,2,0,0,2,0,0,2)</math> || <math>\omega^{\omega^{\omega^{\omega^{\omega+1}+1}+1}}</math> |- | <math>(0,1,0,2,0,3)</math> || <math>\varepsilon _0</math> |- | <math>(0,1,0,2,0,3,0,0,1)</math> || <math>\omega^{\varepsilon_0+1}</math> |- | <math>(0,1,0,2,0,3,0,0,1,0,9)</math> || <math>\omega^{\varepsilon_0+\omega^\omega}</math> |- | <math>(0,1,0,2,0,3,0,0,1,0,9,0,10)</math> || <math>\omega^{\varepsilon_0\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,1,0,9,0,10,0,0,1,0,16,0,17)</math> || <math>\omega^{\varepsilon_0\times3}</math> |- | <math>(0,1,0,2,0,3,0,0,2)</math> || <math>\omega^{\omega^{\varepsilon_0+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13)</math> || <math>\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,0,1,0,20,0,21)</math> || <math>\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11)</math> || <math>\omega^{\omega^{\varepsilon_0+1}\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,0,1,0,23,0,24)</math> || <math>\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,0,1,0,23,0,24,0,0,0,1,0,31,0,32)</math> || <math>\omega^{\omega^{\varepsilon_0+1}\times2+\varepsilon_0\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,0,1,0,23,0,24,0,0,22)</math> || <math>\omega^{\omega^{\varepsilon_0+1}\times3}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,0,1,0,23,0,24,0,0,22,0,0,0,1,0,34,0,35,0,0,33)</math> || <math>\omega^{\omega^{\varepsilon_0+1}\times4}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,11)</math> || <math>\omega^{\omega^{\varepsilon_0+2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,11,0,0,0,1,0,26,0,27,0,0,25,0,0,25)</math> || <math>\omega^{\omega^{\varepsilon_0+2}\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,0,11,0,0,11)</math> || <math>\omega^{\omega^{\varepsilon_0+3}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,18)</math> || <math>\omega^{\omega^{\varepsilon_0+\omega}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,19)</math> || <math>\omega^{\omega^{\varepsilon_0+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,19,0,20)</math> || <math>\omega^{\omega^{\varepsilon_0\times2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,19,0,20,0,0,11)</math> || <math>\omega^{\omega^{\varepsilon_0\times2+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,11,0,19,0,20,0,0,11,0,26,0,27)</math> || <math>\omega^{\omega^{\varepsilon_0\times3}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,21)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,21,0,0,0,1,0,33,0,34,0,0,32)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+1}\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,21,0,0,21)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,21,0,28)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+\omega}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,21,0,29)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,21,0,29,0,30)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0\times2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,1,0,12,0,13,0,0,12,0,0,1,0,22,0,23,0,0,22)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}}\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,14)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,14,0,0,14)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0+2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,14,0,22)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,14,0,22,0,23)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\varepsilon_0\times2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,0,1,0,26,0,27,0,0,26)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+\omega^{\omega^{\varepsilon_0+1}}\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+1}\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,0,14)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,0,14,0,33,0,34 )</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0\times2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,24)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}\times2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,24,0,0,0,14,0,36,0,37,0,0,35 )</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+1}\times3}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,24,0,0,24)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+2}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,24,0,31)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+\omega}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,24,0,32)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0+\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,24,0,32,0,33)</math> || <math>\omega^{\omega^{\omega^{\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,25)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,25,0,0,14)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,25,0,0,14,0,35,0,36)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\varepsilon_0}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,25,0,0,14,0,35,0,36,0,0,34)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0+1}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,25,0,0,14,0,35,0,36,0,0,34,0,42,0,43)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}+\omega^{\varepsilon_0\times2}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,14,0,25,0,26,0,0,25,0,0,14,0,35,0,36,0,0,35)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}}\times2}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,1,0,15,0,16,0,0,15,0,0,15)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,0,2,0,0,2)</math> || <math>\omega^{\omega^{\omega^{\omega^{\varepsilon_0+1}+1}+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8)</math> || <math>\varepsilon_1</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,1)</math> || <math>\omega^{\varepsilon_1+1}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,1,0,14,0,15)</math> || <math>\omega^{\varepsilon_1+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,1,0,14,0,15,0,0,14,0,20)</math> || <math>\omega^{\varepsilon_1\times2}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,1,0,14,0,15,0,0,14,0,20,0,0,1,0,26,0,27,0,0,26,0,32)</math> || <math>\omega^{\varepsilon_1\times3}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,2)</math> || <math>\omega^{\omega^{\varepsilon_1+1}}</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,2,0,13)</math> || <math>\varepsilon_2</math> |- | <math>(0,1,0,2,0,3,0,0,2,0,8,0,0,2,0,13,0,0,2,0,18)</math> || <math>\varepsilon_3</math> |- | <math>(0,1,0,2,0,3,0,3)</math> || <math>\varepsilon_\omega</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,1,0,11,0,12)</math> || <math>\omega^{\varepsilon_\omega+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,1,0,11,0,12,0,12)</math> || <math>\omega^{\varepsilon_\omega\times2}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2)</math> || <math>\omega^{\omega^{\varepsilon_\omega+1}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10)</math> || <math>\varepsilon_{\omega+1}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17)</math> || <math>\omega^{\varepsilon_{\omega+1}+\varepsilon_\omega}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,15)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\varepsilon_\omega+1}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,15,0,0,0,1,0,29,0,30,0,30)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\varepsilon_\omega+1}+\varepsilon_\omega}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,15,0,0,0,1,0,29,0,30,0,30,0,0,28)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\varepsilon_\omega+1}\times2}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,15,0,0,15)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\varepsilon_\omega+2}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,15,0,25)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\varepsilon_\omega+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,15,0,25,0,26,0,26)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\varepsilon_\omega\times2}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,16)</math> || <math>\omega^{\varepsilon_{\omega+1}+\omega^{\omega^{\varepsilon_\omega+1}}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,1,0,16,0,17,0,17,0,0,16,0,24)</math> || <math>\omega^{\varepsilon_{\omega+1}\times2}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,2)</math> || <math>\omega^{\omega^{\varepsilon_{\omega+1}}}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,0,2,0,15)</math> || <math>\varepsilon_{\omega+2}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,10)</math> || <math>\varepsilon_{\omega\times2}</math> |- | <math>(0,1,0,2,0,3,0,3,0,0,2,0,10,0,10,0,0,2,0,17,0,17)</math> || <math>\varepsilon_{\omega\times3}</math> |- | <math>(0,1,0,2,0,3,0,3,0,3)</math> || <math>\varepsilon_{\omega^2}</math> |- | <math>(0,1,0,2,0,4)</math> || <math>\varepsilon_{\omega^\omega}</math> |- | <math>(0,1,0,2,0,4,0,1)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+1}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,0,0,1,0,14)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,0,7)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,0,7,0,0,7)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\omega^{\omega+2}}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,0,7,0,13)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,9)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\varepsilon_0}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,9,0,0,8,0,14)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\varepsilon_1}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,9,0,9)</math> || <math>\omega^{\varepsilon_{\omega^\omega}+\varepsilon_\omega}</math> |- | <math>(0,1,0,2,0,4,0,1,0,8,0,10)</math> || <math>\omega^{\varepsilon_{\omega^\omega}\times2}</math> |- | <math>(0,1,0,2,0,4,0,2)</math> || <math>\omega^{\omega^{\varepsilon_{\omega^\omega}+1}}</math> |- | <math>(0,1,0,2,0,4,0,2,0,7)</math> || <math>\varepsilon_{\omega^\omega+1}</math> |- | <math>(0,1,0,2,0,4,0,2,0,7,0,0,2,0,12)</math> || <math>\varepsilon_{\omega^\omega+2}</math> |- | <math>(0,1,0,2,0,4,0,2,0,7,0,7)</math> || <math>\varepsilon_{\omega^\omega+\omega}</math> |- | <math>(0,1,0,2,0,4,0,2,0,8)</math> || <math>\varepsilon_{\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,4,0,2,0,8,0,2,0,11)</math> || <math>\varepsilon_{\omega^\omega\times2+1}</math> |- | <math>(0,1,0,2,0,4,0,2,0,8,0,2,0,11,0,11)</math> || <math>\varepsilon_{\omega^\omega\times2+\omega}</math> |- | <math>(0,1,0,2,0,4,0,2,0,8,0,2,0,12)</math> || <math>\varepsilon_{\omega^\omega\times3}</math> |- | <math>(0,1,0,2,0,4,3)</math> || <math>\varepsilon_{\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,0,1)</math> || <math>\omega^{\varepsilon_{\omega^{\omega+1}}+1}</math> |- | <math>(0,1,0,2,0,4,3,0,0,0,2,0,10)</math> || <math>\varepsilon_{\omega^{\omega+1}+1}</math> |- | <math>(0,1,0,2,0,4,3,0,0,0,2,0,11)</math> || <math>\varepsilon_{\omega^{\omega+1}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,4,3,0,0,0,2,0,11,0,2,0,15)</math> || <math>\varepsilon_{\omega^{\omega+1}+\omega^\omega\times2}</math> |- | <math>(0,1,0,2,0,4,3,0,0,0,2,0,11,10)</math> || <math>\varepsilon_{\omega^{\omega+1}\times2}</math> |- | <math>(0,1,0,2,0,4,3,0,0,0,2,0,11,10,0,0,0,2,0,18,17)</math> || <math>\varepsilon_{\omega^{\omega+1}\times3}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3)</math> || <math>\varepsilon_{\omega^{\omega+2}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,0,0,2,0,14)</math> || <math>\varepsilon_{\omega^{\omega+2}+\omega^\omega}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,0,0,2,0,14,13)</math> || <math>\varepsilon_{\omega^{\omega+2}+\omega^{\omega+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,0,0,2,0,14,13,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega+2}\times2}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,0,3)</math> || <math>\varepsilon_{\omega^{\omega+3}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,9)</math> || <math>\varepsilon_{\omega^{\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,10)</math> || <math>\varepsilon_{\omega^{\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,10,3)</math> || <math>\varepsilon_{\omega^{\omega^\omega+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,3,0,10,3,0,0,3,0,16)</math> || <math>\varepsilon_{\omega^{\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+1}+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,3,0,14 )</math> || <math>\varepsilon_{\omega^{\omega^{\omega+1}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,3,0,14,3,0,0,3,0,20)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+1}+\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,3,0,14,3,0,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+1}\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,4,3)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+2}+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,4,3,0,0,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+2}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,4,3,0,0,3,0,18,3,0,0,18,3,0,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+2}\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,0,4,3,0,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega+3}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,3,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,3,0,13,3,0,0,3,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}+\omega^\omega\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,3,0,13,3,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,3,0,13,3,0,0,13,3,0,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}+\omega^{\omega+2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,3,0,13,3,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,3,0,13,3,0,14,3,0,0,3,0,22,3,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2}\times3}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times2+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,4,3,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times3}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,0,4,3,0,12,3,0,0,4,3,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega\times4}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,5)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,5,3,0,0,4,3,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^2+\omega}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,5,3,0,0,4,3,0,15,3,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^2\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,5,3,0,5,3,0,5)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^3}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,3)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega}+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,3,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega}+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,3,0,12,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega}+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,3,0,12,3,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega}+\omega^{\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,3,0,12,3,0,14)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega}\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4,3,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega+2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4,3,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega+\omega}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4,3,0,11,3,0,0,4,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega+\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4,3,0,11,3,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega+\omega^2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4,3,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,0,4,3,0,12,0,0,4,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^\omega\times3}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,0,0,4)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+1}+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,0,0,4,3,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+1}+\omega}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,0,0,4,3,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+1}+\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,0,0,4,3,0,16,0,0,4,3,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+1}+\omega^\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,0,0,4,3,0,16,0,15)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+1}\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,0,5)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega+2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,10)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,11)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,11,0,5)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^\omega+1}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,5,3,0,11,0,5,3,0,16)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega+1}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega+1}+\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega+1}\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,0,0,5,3,0,23,0,22)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega+1}\times3}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega+2}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,17)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^{\omega+1}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,0,0,5,3,0,34,0,33)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^{\omega+1}\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^{\omega+2}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,0,23,3,0,0,0,5,3,0,38,0,37,3,0,0,37)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^{\omega+2}\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,0,23,3,0,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^{\omega+3}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,28)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}+\omega^{\omega\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,29)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,0,5,3,0,24,0,23,3,0,29,0,0,5,3,0,35,0,34,3,0,40)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega}\times3}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,12)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega+1}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,12,3,0,18,0,12,3,0,23)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^\omega\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20,0,0,5,3,0,26)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^\omega\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega+1}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20,0,19,3,0,25)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20,0,19,3,0,25,0,19)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega+1}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20,0,19,3,0,25,0,19,3,0,30)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}+\omega^{\omega^\omega\times2}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,5,3,0,13,0,13,0,5,3,0,20,0,20)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}}\times2}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,6,0,6,0,6)</math> || <math>\varepsilon_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega+1}+1}}}}}</math> |- | <math>(0,1,0,2,0,4,3,0,7)</math> || <math>\varepsilon_{\varepsilon_0}</math> |- | <math>(0,1,0,2,0,4,3,0,7,0,2)</math> || <math>\omega^{\omega^{\varepsilon_{\varepsilon_0}+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,0,2,0,10)</math> || <math>\varepsilon_{\varepsilon_0+1}</math> |- | <math>(0,1,0,2,0,4,3,0,7,0,2,0,11)</math> || <math>\varepsilon_{\varepsilon_0+\omega^\omega}</math> |- | <math>(0,1,0,2,0,4,3,0,7,0,2,0,11,10,0,14)</math> || <math>\varepsilon_{\varepsilon_0\times2}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+1}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,0,3,0,13)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+\omega^\omega}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,0,7)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+\omega^{\omega+1}}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,0,7,3,0,0,3,0,17,3,0,0,17)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+\omega^{\omega+1}\times2}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,0,7,3,0,0,7)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+\omega^{\omega+2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,8)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+\omega^{\omega\times2}}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,9)</math> || <math>\varepsilon_{\omega^{\varepsilon_0+\omega^{\omega^\omega}}}</math> |- | <math>(0,1,0,2,0,4,3,0,7,3,0,10)</math> || <math>\varepsilon_{\omega^{\varepsilon_0\times2}}</math> |- | <math>(0,1,0,2,0,4,4)</math> || <math>\varepsilon_{\omega^{\omega^{\varepsilon_0+1}}}</math> |- [[分类:分析]]
返回
PPS分析Part1
。
查看“︁PPS分析Part1”︁的源代码
来自Googology Wiki