打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁DcN”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
DcN
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
DcN,是 318`4 创造的便于打字的记号,主要用于写 FOS 中作为序数的项,几乎不可能良定义,主要通过枚举列表来主观推算定义。DcN 的极限是 <math>\varphi(10,0)</math>,Y_cpper 将其扩展到 <math>\Gamma_0</math>,现在一般在 <math>\varphi(\omega,0)</math> 之后使用这个扩展。DcN 的所有符号都集中在电脑键盘左上方的一小片区域,qwerty13456789,456789 使用频率很低,Veblen 记号需要随时要输入括号下标希腊字母,1-Y 则有比 DcN 更长的常见表达式,所以 DcN 便于打字,是专为 FOS 中常见序数设计的记号;但因为可读性差,DcN 一直没能流传开来。 因为完全无r的 DcN 存在歧义,比如 wtw1wtww 可以是 <math>\omega^{\omega^2}+\omega^\omega</math>,也可以是 <math>\omega^{\omega^{\omega^2}+\omega}</math>,因此在表达 FOS 的项时,建议使用含 r 的 DcN,但是去掉所有位于表达式末尾的 r,如 <math>\omega^{\omega^{\omega^\omega}}</math>=wtwtwtwrrr 记作 wtwtwtw。 1-Y 不必多说,是 Yukito 在 2019 年创造的序列记号,首次引入山脉图,在 Y(1,3) 之前有非常优秀的性质,因此也常用于表达 FOS 中作为项的序数。不过为简便,写 1-Y 表达式时通常省略 Y( ) 外壳和逗号,超过 10 的数字用拉丁字母表示,超过 36 则无写法。 在研究 FOS 的定义、构造原理时,使用 1-Y 的情况更多,因为 1-Y 的山脉结构和 FOS 中项内部的山脉结构类似;而在研究 FOS 的分析、强度形成原理时,为简便起见,使用 DcN 更多。在阅读 FOS 的枚举列表之前,请务必将本文的枚举列表熟透于心中,否则用 Veblen 记号或 OCF 写 FOS 表达式费时费力。 {| class="wikitable" |- !序数(十进制 + Cantor 记号 + Veblen 记号) !DcN !1-Y |- |<math>0</math> |0 |<math>\varnothing</math> |- |<math>1</math> |1 |1 |- |<math>2</math> |11 |11 |- |<math>3</math> |111 |111 |- |<math>\omega</math> |w |12 |- |<math>\omega+1</math> |1w |121 |- |<math>\omega+2</math> |11w |1211 |- |<math>\omega2</math> |w1 |1212 |- |<math>\omega2+1</math> |1w1 |12121 |- |<math>\omega3</math> |w11 |121212 |- |<math>\omega3+1</math> |1w11 |1212121 |- |<math>\omega^2</math> |ww |122 |- |<math>\omega^2+1</math> |1ww |1221 |- |<math>\omega^2+\omega</math> |w1ww |12212 |- |<math>\omega^2+\omega+1</math> |1w1ww |122121 |- |<math>\omega^2+\omega2</math> |w11ww |1221212 |- |<math>\omega^2+\omega2+1</math> |1w11ww |12212121 |- |<math>\omega^2+\omega3</math> |w111ww |122121212 |- |<math>\omega^22</math> |ww1 |122122 |- |<math>\omega^22+\omega</math> |w1ww1 |12212212 |- |<math>\omega^22+\omega2</math> |w11ww1 |1221221212 |- |<math>\omega^23</math> |ww11 |122122122 |- |<math>\omega^3</math> |www |1222 |- |<math>\omega^3+\omega</math> |w1www |122212 |- |<math>\omega^3+\omega^2</math> |ww1www |1222122 |- |<math>\omega^3+\omega^2+1</math> |1ww1www |12221221 |- |<math>\omega^3+\omega^2+\omega</math> |w1ww1www |122212212 |- |<math>\omega^3+\omega^2+\omega+1</math> |1w1ww1www |1222122121 |- |<math>\omega^3+\omega^2+\omega2</math> |w11ww1www |12221221212 |- |<math>\omega^3+\omega^22+\omega</math> |w1ww11www |122212212212 |- |<math>\omega^3+\omega^22+\omega2+1</math> |1w11ww11www |122212212212121 |- |<math>\omega^32</math> |www1 |12221222 |- |<math>\omega^4</math> |wwww |12222 |- |<math>\omega^5</math> |wwwww |122222 |- |<math>\omega^\omega</math> |wtw |123 |- |<math>\omega^\omega+1</math> |1wtw |1231 |- |<math>\omega^\omega+\omega</math> |w1wtw |12312 |- |<math>\omega^\omega+\omega2</math> |w11wtw |1231212 |- |<math>\omega^\omega+\omega^2</math> |ww1wtw |123122 |- |<math>\omega^\omega2</math> |w1tw |123123 |- |<math>\omega^\omega2+\omega^2</math> |ww1w1tw |123123122 |- |<math>\omega^\omega3</math> |w11tw |123123123 |- |<math>\omega^{\omega+1}</math> |wt1w |1232 |- |<math>\omega^{\omega+1}+\omega^2</math> |ww1wt1w |1232122 |- |<math>\omega^{\omega+1}+\omega^\omega</math> |wtwr1wt1w |1232123 |- |<math>\omega^{\omega+1}+\omega^\omega2</math> |w1twr1wt1w |1232123123 |- |<math>\omega^{\omega+1}2+\omega^\omega</math> |wtwr1w1t1w |12321232123 |- |<math>\omega^{\omega+1}2+\omega^\omega2</math> |w1twr1w1t1w |12321232123123 |- |<math>\omega^{\omega+1}3</math> |w11t1w |123212321232 |- |<math>\omega^{\omega+2}</math> |wt11w |12322 |- |<math>\omega^{\omega+3}</math> |wt111w |123222 |- |<math>\omega^{\omega2}</math> |wtw1 |12323 |- |<math>\omega^{\omega2+1}</math> |wt1w1 |123232 |- |<math>\omega^{\omega2+1}+\omega^{\omega2}</math> |wtw1r1wt1w1 |12323212323 |- |<math>\omega^{\omega2+1}+\omega^{\omega2}2</math> |w1tw1r1wt1w1 |1232321232312323 |- |<math>\omega^{\omega2+1}2+\omega^{\omega2}2</math> |w1tw1r1w1t1w1 |1232321232321232312323 |- |<math>\omega^{\omega2+1}2+\omega^{\omega2}2+\omega^{\omega+1}2+\omega^{\omega}2</math> |w1twr1w1t1wr1w1tw1r1w1t1w1 |123232123232123231232312321232123123 |- |<math>\omega^{\omega2+2}</math> |wt11w1 |1232322 |- |<math>\omega^{\omega2+2}+\omega^{\omega2+1}</math> |wt1w1r1wt11w1 |1232322123232 |- |<math>\omega^{\omega3}</math> |wtw11 |1232323 |- |<math>\omega^{\omega3+1}+\omega^{\omega3}</math> |wtw11r1wt1w11 |123232321232323 |- |<math>\omega^{\omega4}</math> |wtw111 |123232323 |- |<math>\omega^{\omega^2}</math> |wtww |1233 |- |<math>\omega^{\omega^2+\omega+1}+\omega^{\omega^2+\omega}</math> |wtw1wwr1wt1w1ww |1233232123323 |- |<math>\omega^{\omega^22}</math> |wtww1 |1233233 |- |<math>\omega^{\omega^3}</math> |wtwww |12333 |- |<math>\omega^{\omega^\omega}</math> |wtwtw |1234 |- |<math>\omega^{\omega^{\omega2+1}3}</math> |wtw11t1w1 |1234343234343234343 |- |<math>\omega^{\omega^{\omega2+2}}</math> |wtwt11w1 |12343433 |- |<math>\omega^{\omega^{\omega3}}</math> |wtwtw11 |12343434 |- |<math>\omega^{\omega^{\omega^2}}</math> |wtwtww |12344 |- |<math>\omega^{\omega^{\omega^\omega}}</math> |wtwtwtw |12345 |- |<math>\varepsilon_0</math> |e |124 |- |<math>\varepsilon_0+\omega</math> |w1e |12412 |- |<math>\varepsilon_0+\omega^\omega</math> |wtwr1e |124123 |- |<math>\varepsilon_02</math> |e1 |124124 |- |<math>\varepsilon_02+\omega</math> |w1e1 |12412412 |- |<math>\varepsilon_0\omega=\omega^{\varepsilon_0+1}</math> |wt1e |1242 |- |<math>\omega^{\varepsilon_0+1}+\varepsilon_0</math> |e1wt1e |1242124 |- |<math>\omega^{\varepsilon_0+1}2</math> |w1t1e |12421242 |- |<math>\omega^{\varepsilon_0+2}</math> |wt11e |12422 |- |<math>\omega^{\varepsilon_0+\omega}</math> |wtw1e |12423 |- |<math>\omega^{\varepsilon_0+\omega^\omega}</math> |wtwtwr1e |124234 |- |<math>\omega^{\varepsilon_02}</math> |wte1 |12424 |- |<math>\omega^\omega^{\varepsilon_0+1}</math> |wtwt1e |1243 |- |<math>\omega^\omega^{\varepsilon_02}</math> |wtwte1 |12435 |- |<math>\varepsilon_1</math> |ee |1244 |- |<math>\omega^{\varepsilon_12}</math> |wtee1 |1244244 |- |<math>\varepsilon_2</math> |eee |12444 |- |<math>\varepsilon_\omega</math> |etw |1245 |- |<math>\varepsilon_\omega+\omega^\omega</math> |wtwr1etw |1245123 |- |<math>\varepsilon_\omega+\varepsilon_0</math> |e1etw |1245124 |- |<math>\varepsilon_\omega2</math> |e1tw |12451245 |- |<math>\omega^{\varepsilon_\omega+1}</math> |wt1etw |12452 |- |<math>\omega^{\varepsilon_\omega+\omega}</math> |wtw1etw |124523 |- |<math>\omega^{\varepsilon_\omega2}</math> |wte1tw |1245245 |- |<math>\varepsilon_{\omega+1}</math> |et1w |12454 |- |<math>\varepsilon_{\omega2}</math> |etw1 |124545 |- |<math>\varepsilon_{\omega^\omega}</math> |etwtw |12456 |- |<math>\varepsilon_{\varepsilon_0}</math> |ete |12457 |- |<math>\varepsilon_{\varepsilon_0+1}</math> |et1e |12457 |- |<math>\varepsilon_{\varepsilon_1}</math> |etee |12457 |- |<math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math> |etete |124578A |- |<math>\zeta_0</math> |y |1246 |- |<math>\zeta_0+\varepsilon_0</math> |e1y |1246124 |- |<math>\zeta_0+\varepsilon_{\varepsilon_0}</math> |eter1y |124612457 |- |<math>\zeta_02</math> |y1 |12461246 |- |<math>\omega^{\zeta_0+1}</math> |wt1y |12462 |- |<math>\omega^{\zeta_0+\varepsilon_\omega}</math> |wtetwr1y |1246245 |- |<math>\omega^{\zeta_02}</math> |wty1 |1246246 |- |<math>\varepsilon_{\zeta_0+1}</math> |ye=et1y |12464 |- |<math>\omega^{\varepsilon_{\zeta_0+1}+1}</math> |wt1ye=wt1et1y |124642 |- |<math>\varepsilon_{\zeta_0+2}</math> |yee=et11y |124644 |- |<math>\varepsilon_{\zeta_0+3}</math> |yeee=et111y |1246444 |- |<math>\varepsilon_{\zeta_0+\omega}</math> |etw1y |124645 |- |<math>\varepsilon_{\zeta_0+\omega^\omega}</math> |etwtwr1y |1246456 |- |<math>\varepsilon_{\zeta_0+\varepsilon_0}</math> |ete1y |1246457 |- |<math>\varepsilon_{\zeta_02}</math> |ety1 |12464579 |- |<math>\varepsilon_{\zeta_02+1}</math> |et1y1 |124645794 |- |<math>\varepsilon_{\zeta_03}</math> |ety11 |124645794579 |- |<math>\varepsilon_{\omega^{\zeta_0+1}}</math> |etwt1y |124645795 |- |<math>\varepsilon_{\varepsilon_{\zeta_0+1}}</math> |etet1y |124645797 |- |<math>\zeta_1</math> |yy |124646 |- |<math>\varepsilon_{\zeta_1+1}</math> |et1yy=yye |1246464 |- |<math>\zeta_2</math> |yyy |12464646 |- |<math>\zeta_{\omega}</math> |ytw |12465 |- |<math>\omega^{\zeta_{\omega}2}</math> |wty1tw |124652465 |- |<math>\varepsilon_{\zeta_{\omega}+1}</math> |et1ytw |124654 |- |<math>\varepsilon_{\zeta_{\omega}+\omega^{\varepsilon_0+1}}</math> |etwt1er1ytw |124654575 |- |<math>\varepsilon_{\zeta_{\omega}+\varepsilon_\omega}</math> |etetwr1ytw |124654578 |- |<math>\varepsilon_{\zeta_{\omega}+\zeta_0}</math> |ety1ytw |124654579 |- |<math>\varepsilon_{\varepsilon_{\zeta_{\omega}2}}</math> |etety1tw |124654579878ACB |- |<math>\zeta_{\omega+1}</math> |yt1w |1246546 |- |<math>\zeta_{\omega2}</math> |ytw1 |124655 |- |<math>\zeta_{\varepsilon_0}</math> |yte |124657 |- |<math>\zeta_{\zeta_0}</math> |yty |1246579 |- |<math>\eta_0</math> |3 |12466 |- |<math>\omega^{\eta_0+1}</math> |wt13 |124662 |- |<math>\omega^{\eta_0+\varepsilon_0}</math> |wte13 |1246624 |- |<math>\omega^{\eta_0+\zeta_0}</math> |wty13 |12466246 |- |<math>\omega^{\eta_02}</math> |wt31 |124662466 |- |<math>\varepsilon_{\eta_0+1}</math> |3e=et13 |124664 |- |<math>\varepsilon_{\eta_0+\omega}</math> |etw13 |1246645 |- |<math>\varepsilon_{\eta_0+\varepsilon_0}</math> |ete13 |12466457 |- |<math>\varepsilon_{\eta_0+\zeta_0}</math> |ety13 |124664579 |- |<math>\varepsilon_{\eta_02}</math> |et31 |1246645799 |- |<math>\zeta_{\eta_0+1}</math> |3y=yt13 |1246646 |- |<math>\zeta_{\eta_0+\omega}</math> |ytw13 |12466465 |- |<math>\zeta_{\eta_0+\varepsilon_0}</math> |yte13 |124664657 |- |<math>\zeta_{\eta_0+\zeta_0}</math> |yty13 |1246646579 |- |<math>\zeta_{\eta_02}</math> |yt31 |12466465799 |- |<math>\eta_1</math> |33 |12466466 |- |<math>\eta_\omega</math> |3tw |124665 |- |<math>\eta_{\eta_0}</math> |3t3 |124665799 |- |<math>\varphi(4,0)</math> |4 |124666 |- |<math>\omega^{\varphi(4,0)2}</math> |wt41 |1246662466 |- |<math>\varepsilon_{\varphi(4,0)+1}</math> |et41 |12466645799 |- |<math>\zeta_{\varphi(4,0)+1}</math> |yt41 |124666465799 |- |<math>\eta_{\varphi(4,0)+1}</math> |3t41 |1246664665799 |- |<math>\varphi(4,1)</math> |44 |1246664666 |- |<math>\varphi(5,0)</math> |5 |1246666 |- |<math>\varphi(6,0)</math> |6 |12466666 |- |<math>\varphi(7,0)</math> |7 |124666666 |- |<math>\varphi(8,0)</math> |8 |1246666666 |- |<math>\varphi(4,\varphi(8,0)+1)+\eta_0</math> |3184=314t18 |1246666666466657999999912466 |- |<math>\varphi(9,0)</math> |9 |12466666666 |- |<math>\varphi(9,\varphi(9,0))</math> |9t9 |124666666665799999999 |- |<math>\varphi(10,0)</math> |limit |124666666666 |+ !序数(十进制 + Cantor 记号 + Veblen 记号) !扩展DcN !1-Y |- |<math>\varphi(10,0)</math> |q1111111111r |124666666666 |- |<math>\varphi(11,0)</math> |q11111111111r |1246666666666 |- |<math>\varphi(\omega,0)</math> |qwr |12467 |- |<math>\varepsilon_{\varphi(\omega,0)+1}</math> |et1qwr=qwre<br>=q1rt1qwr=qwrq1r |124674 |- |<math>\varphi(\omega,1)</math> |qwrqwr |12467467 |- |<math>\varphi(\omega,\omega)</math> |qwrtw |124675 |- |<math>\varphi(\omega+1,0)</math> |q1wr |124676 |- |<math>\varphi(\omega2,0)</math> |qw1r |1246767 |- |<math>\varphi(\varepsilon_0,0)</math> |qer |124679 |- |<math>\varphi(\varepsilon_0+\omega,\zeta_0)</math> |qw1erty(qwerty) |12467967579 |- |<math>\varphi(\zeta_0,0)</math> |qyr |124679B |- |<math>\varphi(\varphi(\omega,0),0)</math> |qqwrr |124679BC |- |<math>\Gamma_0</math> |limit |12468 |} {| class="wikitable" !序数(十进制+BOCF) !1-Y |- |<math>\psi(\Omega^{\Omega})</math> |12468 |- |<math>\psi(\Omega^{\Omega}+1)</math> |124682 |- |<math>\psi(\Omega^{\Omega}+\psi(\Omega^{\Omega}))</math> |124682468 |- |<math>\psi(\Omega^{\Omega}+\Omega)</math> |124684 |- |<math>\psi(\Omega^{\Omega}+\Omega^\omega)</math> |12468467 |- |<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\omega)})</math> |124684679AB |- |<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega)})</math> |124684679AC |- |<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega)+1})</math> |124684679AC6 |- |<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega+1)})</math> |124684679AC7 |- |<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega+\Omega)})</math> |124684679AC9 |- |<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega+\Omega^\omega)})</math> |124684679AC9AB |- |<math>\psi(\Omega^{\Omega}2)</math> |12468468 |- |<math>\psi(\Omega^{\Omega+1})</math> |124686 |- |<math>\psi(\Omega^{\Omega+\psi(\Omega^{\Omega})})</math> |12468679BD |- |<math>\psi(\Omega^{\Omega2})</math> |1246868 |- |<math>\psi(\Omega^{\Omega\psi(\Omega^{\Omega})})</math> |1246879BD |- |<math>\psi(\Omega^{\Omega^2})</math> |124688 |- |<math>\psi(\Omega^{\Omega^\omega})</math> |124689 |- |<math>\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^\omega})}})</math> |124689BDFG |- |<math>\psi(\Omega^{\Omega^\Omega})</math> |12468A |- |<math>\psi(\Omega_2)</math> |1247 |- |<math>\psi(\Omega_2+\Omega^\Omega)</math> |1247468 |- |<math>\psi(\Omega_2+\psi_1(\Omega_2))</math> |124747 |- |<math>\psi(\Omega_2+\psi_1(\Omega_2+\Omega))</math> |12476 |- |<math>\psi(\Omega_2+\psi_1(\Omega_2+\Omega^\Omega))</math> |124768 |- |<math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math> |124769 |- |<math>\psi(\Omega_22)</math> |12477 |- |<math>\psi(\Omega_2\omega)</math> |12478 |- |<math>\psi(\Omega_2\Omega)</math> |12479 |- |<math>\psi(\Omega_2^2)</math> |1247A |- |<math>\psi(\Omega_2^{\Omega_2})</math> |1247AD |- |<math>\psi(\Omega_3)</math> |1247B |- |<math>\psi(\Omega_4)</math> |1247BG |- |<math>\psi(\Omega_\omega)</math> |1248 |} 再往后涉及项嵌套的提升效应,目前对此研究不清晰,故枚举列表暂时到此为止。 {{默认排序:个人记号}} [[分类:分析]] [[分类:记号]]
返回
DcN
。
查看“︁DcN”︁的源代码
来自Googology Wiki