打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁BMS分析”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
BMS分析
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
目前使用的OCF为M型,后续补充BOCF ==== 1:单行BMS(PrSS) ==== <math>\varnothing=0</math> <math>(0)=1</math> <math>(0)(0)=2</math> <math>(0)(0)(0)=3</math> <math>(0)(1)=(0)(0)(0)(0)(0)...=\omega</math> <math>(0)(1)(0)=\omega+1</math> <math>(0)(1)(0)(0)=\omega+2</math> <math>(0)(1)(0)(1)=\omega\times2</math> <math>(0)(1)(0)(1)(0)(1)=\omega\times3</math> <math>(0)(1)(1)=(0)(1)(0)(1)(0)(1)...=\omega^2</math> <math>(0)(1)(1)(0)=\omega^2+1</math> <math>(0)(1)(1)(0)(1)=\omega^2+\omega</math> <math>(0)(1)(1)(0)(1)(0)(1)=\omega^2+\omega\times2</math> <math>(0)(1)(1)(0)(1)(1)=\omega^2\times2</math> <math>(0)(1)(1)(0)(1)(1)(0)(1)=\omega^2\times2+\omega</math> <math>(0)(1)(1)(0)(1)(1)(0)(1)(1)=\omega^2\times3</math> <math>(0)(1)(1)(1)=\omega^3</math> <math>(0)(1)(1)(1)(1)=\omega^4</math> <math>(0)(1)(2)=(0)(1)(1)(1)(1)...=\omega^\omega</math> <math>(0)(1)(2)(0)(1)(2)=\omega^\omega\times2</math> <math>(0)(1)(2)(1)=\omega^{\omega+1}</math> <math>(0)(1)(2)(1)(1)=\omega^{\omega+2}</math> <math>(0)(1)(2)(1)(1)(1)=\omega^{\omega+3}</math> <math>(0)(1)(2)(1)(2)=\omega^{\omega\times2}</math> <math>(0)(1)(2)(1)(2)(1)(2)=\omega^{\omega\times3}</math> <math>(0)(1)(2)(2)=\omega^{\omega^2}</math> <math>(0)(1)(2)(2)(1)=\omega^{\omega^2+1}</math> <math>(0)(1)(2)(2)(1)(2)=\omega^{\omega^2+\omega}</math> <math>(0)(1)(2)(2)(1)(2)(2)=\omega^{\omega^2\times2}</math> <math>(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)=\omega^{\omega^2\times3}</math> <math>(0)(1)(2)(2)(2)=\omega^{\omega^3}</math> <math>(0)(1)(2)(2)(2)(2)=\omega^{\omega^4}</math> <math>(0)(1)(2)(3)=(0)(1)(2)(2)(2)(2)...=\omega^{\omega^\omega}</math> <math>(0)(1)(2)(3)(4)=\omega^{\omega^{\omega^\omega}}</math> <math>(0)(1)(2)(3)(4)(5)=\omega^{\omega^{\omega^{\omega^\omega}}}</math> <math>(0)(1,1)=(0)(1)(2)(3)(4)(5)(6)...=\varepsilon_0</math> ==== 2:双行BMS ==== <math>(0)(1,1)=\varepsilon_0</math> <math>(0)(1,1)(0,0)=\varepsilon_0+1</math> <math>(0)(1,1)(0,0)(1,0)=\varepsilon_0+\omega</math> <math>(0)(1,1)(0,0)(1,1)=\varepsilon_0\times2</math> <math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)=\varepsilon_0\times3</math> <math>(0)(1,1)(1,0)=\varepsilon_0\times\omega</math> <math>(0)(1,1)(1,0)(1,0)=\varepsilon_0\times\omega^2</math> <math>(0)(1,1)(1,0)(2,0)=\varepsilon_0\times\omega^\omega</math> <math>(0)(1,1)(1,0)(2,0)(3,0)=\varepsilon_0\times\omega^{\omega^\omega}</math> <math>(0)(1,1)(1,0)(2,1)=\varepsilon_0^2</math> <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)=\varepsilon_0^2\times\omega</math> <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)=\varepsilon_0^2\times\omega^\omega</math> <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^3</math> <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^4</math> <math>(0)(1,1)(1,0)(2,1)(2,0)=\varepsilon_0^\omega</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)=\varepsilon_0^{\omega+1}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^{\omega+2}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times2}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times3}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)=\varepsilon_0^{\omega^2}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)=\varepsilon_0^{\omega^\omega}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)=\varepsilon_0^{\omega^{\omega^\omega}}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_0^{\varepsilon_0}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math> <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math> <math>(0)(1,1)(1,1)=\varepsilon_1</math> <math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)=\varepsilon_1\times2</math> <math>(0)(1,1)(1,1)(1,0)=\varepsilon_1\times\omega</math> <math>(0)(1,1)(1,1)(1,0)(2,1)=\varepsilon_1\times\varepsilon_0</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_1\times\varepsilon_0^2</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)=\varepsilon_1^2</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)=\varepsilon_1^\omega</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)=\varepsilon_1^{\varepsilon_0}</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math> <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math> <math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math> <math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math> <math>(0)(1,1)(2,0)=\varepsilon_\omega</math> <math>(0)(1,1)(2,0)(1,0)=\varepsilon_\omega\times\omega</math> <math>(0)(1,1)(2,0)(1,0)(2,1)=\varepsilon_\omega\times\varepsilon_0</math> <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math> <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math> <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math> <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)=\varepsilon_\omega^2</math> <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)=\varepsilon_\omega^{\varepsilon_\omega}</math> <math>(0)(1,1)(2,0)(1,1)=\varepsilon_{\omega+1}</math> <math>(0)(1,1)(2,0)(1,1)(1,1)=\varepsilon_{\omega+2}</math> <math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math> <math>(0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times2}</math> <math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times3}</math> <math>(0)(1,1)(2,0)(2,0)=\varepsilon_{\omega^2}</math> <math>(0)(1,1)(2,0)(2,0)(2,0)=\varepsilon_{\omega^3}</math> <math>(0)(1,1)(2,0)(3,0)=\varepsilon_{\omega^\omega}</math> <math>(0)(1,1)(2,0)(3,0)(4,0)=\varepsilon_{\omega^{\omega^\omega}}</math> <math>(0)(1,1)(2,0)(3,1)=\varepsilon_{\varepsilon_0}</math> <math>(0)(1,1)(2,0)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math> <math>(0)(1,1)(2,0)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math> <math>(0)(1,1)(2,0)(3,1)(4,0)=\varepsilon_{\varepsilon_\omega}</math> <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math> <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math> <math>(0)(1,1)(2,1)=\zeta_0</math> <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)=\zeta_0^2</math> <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)=\zeta_0^{\zeta_0}</math> <math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math> <math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math> <math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math> <math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_0+\omega}</math> <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math> <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math> <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math> <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math> <math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math> <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math> <math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_1+\omega}</math> <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math> <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math> <math>(0)(1,1)(2,1)(2,0)=\zeta_\omega</math> <math>(0)(1,1)(2,1)(2,0)(2,0)=\zeta_{\omega^2}</math> <math>(0)(1,1)(2,1)(2,0)(3,1)=\zeta_{\varepsilon_0}</math> <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)=\zeta_{\zeta_0}</math> <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math> <math>(0)(1,1)(2,1)(2,1)=\eta_0</math> <math>(0)(1,1)(2,1)(2,1)(1,1)=\varepsilon_{\eta_0+1}</math> <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math> <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math> <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math> <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math> <math>(0)(1,1)(2,1)(2,1)(2,0)=\eta_\omega</math> <math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math> <math>(0)(1,1)(2,1)(3,0)=\varphi(\omega,0)=\psi(\Omega^\omega)</math> <math>(0)(1,1)(2,1)(3,0)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math> <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math> <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math> <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math> <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math> <math>(0)(1,1)(2,1)(3,0)(2,0)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math> <math>(0)(1,1)(2,1)(3,0)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math> <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math> <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math> <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math> <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math> <math>(0)(1,1)(2,1)(3,0)(3,0)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math> <math>(0)(1,1)(2,1)(3,0)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math> <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math> <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math> <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math> <math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math> <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,1)=\Gamma_1=\psi(\Omega^\Omega\times2)</math> <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math> <math>(0)(1,1)(2,1)(3,1)(2,0)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math> <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math> <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math> <math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math> <math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math> <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math> <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math> <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math> <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math> <math>(0)(1,1)(2,1)(3,1)(3,0)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math> <math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math> <math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math> <math>(0)(1,1)(2,1)(3,1)(4,0)=\psi(\Omega^{\Omega^\omega})</math> <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math> <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math> <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math> <math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math> <math>(0)(1,1)(2,1)(3,1)(4,1)(5,1)=\psi(\Omega^{\Omega^{\Omega^\Omega}})</math> <math>(0)(1,1)(2,2)=\psi(\psi_1(0))</math> <math>(0)(1,1)(2,2)(1,1)=\psi(\psi_1(0)+1)</math> <math>(0)(1,1)(2,2)(1,1)(2,1)=\psi(\psi_1(0)+\Omega)</math> <math>(0)(1,1)(2,2)(1,1)(2,1)(3,1)=\psi(\psi_1(0)+\Omega^\Omega)</math> <math>(0)(1,1)(2,2)(1,1)(2,2)=\psi(\psi_1(0)\times2)</math> <math>(0)(1,1)(2,2)(2,0)=\psi(\psi_1(0)\times\omega)</math> <math>(0)(1,1)(2,2)(2,1)=\psi(\psi_1(0)\times\Omega)</math> <math>(0)(1,1)(2,2)(2,1)(3,0)=\psi(\psi_1(0)\times\Omega^\omega)</math> <math>(0)(1,1)(2,2)(2,1)(3,1)=\psi(\psi_1(0)\times\Omega^\Omega)</math> <math>(0)(1,1)(2,2)(2,1)(3,2)=\psi(\psi_1(0)^2)</math> <math>(0)(1,1)(2,2)(2,1)(3,2)(3,0)=\psi(\psi_1(0)^\omega)</math> <math>(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)=\psi(\psi_1(0)^{\psi_1(0)})</math> <math>(0)(1,1)(2,2)(2,2)=\psi(\psi_1(1))</math> <math>(0)(1,1)(2,2)(3,0)=\psi(\psi_1(\omega))</math> <math>(0)(1,1)(2,2)(3,1)(4,2)=\psi(\psi_1(\psi_1(0)))</math> <math>(0)(1,1)(2,2)(3,2)=\psi(\Omega_2)</math> <math>(0)(1,1)(2,2)(3,2)(1,1)=\psi(\Omega_2+\Omega)</math> <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)=\psi(\Omega_2+\psi_1(0))</math> <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2)=\psi(\Omega_2+\psi_1(\psi_1(0)))</math> <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2)=\psi(\Omega_2+\psi_1(\Omega_2))</math> <math>(0)(1,1)(2,2)(3,2)(2,0)=\psi(\Omega_2+\psi_1(\Omega_2)\times\omega)</math> <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)=\psi(\Omega_2+\psi_1(\Omega_2)^2)</math> <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2)^\omega)</math> <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)=\psi(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)})</math> <math>(0)(1,1)(2,2)(3,2)(2,2)=\psi(\Omega_2+\psi_1(\Omega_2+1))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2+\omega))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)\times\omega))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^\omega))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)}))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+1)))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\omega)))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2))))</math> <math>(0)(1,1)(2,2)(3,2)(2,2)(3,2)=\psi(\Omega_2\times2)</math> <math>(0)(1,1)(2,2)(3,2)(3,0)=\psi(\Omega_2\times\omega)</math> <math>(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2)=\psi(\Omega_2\times\psi_1(\Omega_2))</math> <math>(0)(1,1)(2,2)(3,2)(3,2)=\psi(\Omega_2^2)</math> <math>(0)(1,1)(2,2)(3,2)(4,0)=\psi(\Omega_2^\omega)</math> <math>(0)(1,1)(2,2)(3,2)(4,2)=\psi(\Omega_2^{\Omega_2})</math> <math>(0)(1,1)(2,2)(3,3)=\psi(\psi_2(0))</math> <math>(0)(1,1)(2,2)(3,3)(4,3)=\psi(\Omega_3)</math> <math>(0)(1,1)(2,2)(3,3)(4,4)=\psi(\psi_3(0))</math> <math>(0)(1,1,1)=(0)(1,1)(2,2)(3,3)\cdots=\psi(\Omega_\omega)</math> ==== 3:三行BMS (0)(1,1,1)~(0)(1,1,1)(2,1,0) ==== 三行之后BMS的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。 <math>(0)(1,1,1)=\psi(\Omega_\omega)</math> <math>(0)(1,1,1)(1,1,0)=\psi(\Omega_\omega+1)</math> <math>(0)(1,1,1)(1,1,0)(2,0,0)=\psi(\Omega_\omega+\omega)</math> <math>(0)(1,1,1)(1,1,0)(2,1,0)=\psi(\Omega_\omega+\Omega)</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)=\psi(\Omega_\omega+\psi_1(0))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(2,2,0)=\psi(\Omega_\omega+\psi_1(1))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\omega))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\psi_1(0)))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_2)\times\omega)</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,1,0)=\psi(\Omega_\omega+\psi_1(\Omega_2)^\omega)</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2+1))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_2+\omega))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2+\psi_1(0)))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2\times2))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_2\times\omega))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2^2))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2^{\Omega_2}))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)=\psi(\Omega_\omega+\psi_1(\psi_2(0)))</math> <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)(4,4,0)=\psi(\Omega_\omega+\psi_1(\psi_3(0)))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)=\psi(\Omega_\omega+\psi_1(\Omega_\omega))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+1))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\omega))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(0)))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)(5,3,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\psi_2(0))))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,1)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\Omega_\omega)))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0)=\psi(\Omega_\omega+\Omega_2)</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,0)=\psi(\Omega_\omega+\psi_2(0))</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0)=\psi(\Omega_\omega+\Omega_3)</math> <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,4,0)=\psi(\Omega_\omega+\psi_3(0))</math> <math>(0)(1,1,1)(1,1,1)=\psi(\Omega_\omega\times2)</math> <math>(0)(1,1,1)(2,0,0)=\psi(\Omega_\omega\times\omega)</math> <math>(0)(1,1,1)(2,1,0)=\psi(\Omega_\omega\times\Omega)</math> ==== 4: (0)(1,1,1)(2,1,0)~(0)(1,1,1)(2,1,0)(1,1,1) ==== 这一部分涉及到[[提升效应]]。 {| class="wikitable" |- ! BMS !! MOCF |- | <math>(0)(1,1,1)(2,1,0)</math> || <math>\psi(\Omega_\omega\times\Omega)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,0,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega+1))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega+\psi_1(0)))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,1)(5,1,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega)))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,2,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_2)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\psi_2(0))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,1)(4,1,0)(3,3,0)(4,3,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_3)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0)(2,2,1)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega+\Omega_\omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,0,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega+\Omega_\omega)\times\omega)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega+\Omega_\omega+1))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0)(3,2,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\Omega_2)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,1)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega\times2)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,0,0)</math> || <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega\times\omega)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0)</math> || <math>\psi(\Omega_\omega\times\Omega\times2)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,0,0)</math> || <math>\psi(\Omega_\omega\times\Omega\times\omega)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0)</math> || <math>\psi(\Omega_\omega\times\psi_1(0))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)</math> || <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)</math> || <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\Omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1)</math> || <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\Omega+\Omega_\omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1)(5,1,0)</math> || <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\Omega\times2)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(6,2,1)</math> || <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\psi_1(\Omega_\omega))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)</math> || <math>\psi(\Omega_\omega\times\Omega_2)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,2,0)(5,3,0)</math> || <math>\psi(\Omega_\omega\times\psi_2(0))</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,0)</math> || <math>\psi(\Omega_\omega\times\Omega_3)</math> |- | <math>(0)(1,1,1)(2,1,0)(1,1,1)</math> || <math>\psi(\Omega_\omega^2)</math> [[分类:分析]]
返回
BMS分析
。
查看“︁BMS分析”︁的源代码
来自Googology Wiki