打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁序数表”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
序数表
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目列举出一些有名字的[[序数]],它们大多在 googology 中具有重大意义 需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。 == 序数表 == {| class="wikitable" |+ |- ! 缩写 !! 英文全称 !! 常规表示方法(BOCF等) !! BMS/Y |- | FTO || First Transfinite Ordinal || <math>\omega</math>|| <math>\mathrm{BMS}(0)(1)</math> |- | LAO || Linar Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| <math>\omega^\omega</math>|| <math>\mathrm{BMS}(0)(1)(2)</math> |- | [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)</math> |- | [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)</math> |- |LCO |Large Cantor Ordinal |<math>\varphi(3,0)=\eta_0=\psi(\Omega^3)</math> |<math>\mathrm{BMS}(0,0)(1,1)(2,1)(2,1)</math> |- | [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,0)</math> |- | [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math> |- |ACO |Ackermann Ordinal |<math>\varphi(1,0,0,0)</math> |<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math> |- | [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math> |- | [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)</math> |- | [[ESVO]]|| Extended Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega^\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)</math> |- | [[ELVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega^{\Omega}}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)(5,1)</math> |- | [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,2)</math> |- | [[BO]]|| Buchholz's Ordinal || <math>\psi(\Omega_{\omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)</math> |- | [[TFBO]]|| Takeuti-Feferman-Buchholz Ordinal || <math>\psi(\Omega_{\omega+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,0)(3,2,0)</math> |- | [[BIO]]|| Bird's Ordinal<ref>鸟之数阵第四版的极限是它,因此得名</ref>|| <math>\psi(\Omega_{\Omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,0)</math> |- | [[EBO]]|| Extended Buchholz Ordinal || <math>\psi(I)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)</math> |- | [[JO]]|| Jager's Ordinal || <math>\psi(\Omega_{I+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)</math> |- | [[SIO]]|| Small Inaccessible Ordinal || <math>\psi(I_{\omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)</math> |- | [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math> |- |TBO |Transfinitary Buchholz's Ordinal |\( \psi(I(1@(1,0))) \) |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)</math> |- | [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\varepsilon_{M+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math> |- | [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math> |- |SNO |Small 1-Mahlo (N) Ordinal |<math>\psi(N_\omega)</math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)</math> |- | [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math> |- |SKO |Small Weakly Compact (K) Ordinal |<math>\psi(K_\omega)</math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math> |- |DO |Duchhart's Ordinal |<math>\psi(\Omega(\Pi_4+1))</math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math> |- | [[SSO]]|| Small Stegert Ordinal || <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> |- |BGO |TSS 1st Back Gear Ordinal | - |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> |- | [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math> |- |APO |Admissible-parameter free effective cardinal Ordinal |<math>\psi(1-((+)-\Pi_1)) </math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math> |- | [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math> |- | [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> |- | [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> |- |DSO |Doubly +1 Stable Ordinal |<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0 </math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math> |- |TSO |Triply +1 Stable Ordinal |<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0 </math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math> |- | pfec LRO|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> |- |SBO |Small Bashicu Ordinal | - |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> |- |pfec M2O |pfec min Σ<sub>2</sub> Ordinal |<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math> |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math> |- |LRO |Large Rathjen Ordinal |<math>F\cap\omega_1^\text{CK},\theta=\omega </math> |<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math> |- |SSPO |Small Simple Projection Ordinal |<math>\psi(psd.\omega-\text{proj.}) </math> |<math>\mathrm{BMS}(0)(1,1,1,1)</math> |- | [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0)(1,1,1,1)</math> |- |LSPO |Large Simple Projection Ordinal |<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.}) </math> |<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math> |- |EO |Eveog's Ordinal |<math>\psi(\psi_\sigma(\sigma_n)) </math> |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,1,1)(3)</math> |- |Q1BGO |Quadro Sequence System 1st Back Gear Ordinal | - |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math> |- |ESPO |Extend Simple Projection Ordinal | - |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math> |- |BOBO |Big Omega Back Ordinal | - |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math> |- | [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math> |- |TCAO |Trio Comprehension Axiom Ordinal |<math>\text{PTO}((\Pi_3^1-CA)_0) </math> |<math>\geqslant\mathrm{BMS}(0)(1,1,1,1,1)</math> |- |QiSSO |Quinto Sequence System Ordinal | - |<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math> |- | SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math> |- | [[ΩSSO]]|| \Omega Sequence System Ordinal || || <math>Y(1,3,4,2,5,8,10)</math> |- | [[GHO]]|| No-Go Hydra Ordinal<ref>原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本</ref>|| || <math>Y(1,3,4,3)</math> |- | [[SYO]]|| Small Yukito Ordinal || || <math>\omega-Y(1,4)</math> |- | MHO/ωYO<ref name=":0" />|| Medium Hydra Ordinal || || <math>\omega-Y</math> 极限 |- | [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{\rm CK}</math> |- | [[FUO]] || First Uncountable Ordinal || <math>\omega_{1}</math>|| |}
返回
序数表
。
查看“︁序数表”︁的源代码
来自Googology Wiki