打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁ZFC公理体系”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
ZFC公理体系
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
我们采用以下的9条公理、公理模式作为我们所使用的ZFC公理体系。 # 外延公理:两个集合 <math>A,B</math> 相等,当且仅当任意x, <math>x \in A</math> 等价于 <math>x \in B</math> # 配对公理:对于任意两个集合 <math>A,B</math> , <math>\{A,B\}</math> 是一个集合<br /> # 分离公理模式:对于任意集合 <math>S</math> ,和带 <math>n</math> 个参数的公式 <math>\phi (x,p0,p1,p2,p3,\cdots),\{x\in S: \phi(x,p0,p1,\cdots)\}</math> 是一个集合 # 并集公理:对于一个集合 <math>S</math> ,存在一个集合 <math>U</math> 使得任意 <math>x\in S</math> ,任意 <math>y\in x,y\in U</math> # 幂集公理:对于任意一个集合 <math>S</math> ,存在一个集合 <math>U</math> 使得 <math>A</math> 是 <math>S</math> 的子集等价于 <math>A\in U</math> # 正则公理:任意一个非空集合 <math>S</math> 上都存在 <math>\in</math> 链最小元,或者换句话说,存在 <math>x\in S</math> 使得 <math>S</math> 非空且 <math>x</math> 交 <math>S</math> 为空 # 替代公理:对于任意一个集合 <math>S</math> ,如果存在一个函数 <math>f:S\rightarrow U</math> ,则 <math>U</math> 是一个集合 # 无穷公理:存在无穷集/存在一个集合 <math>S</math> 使得空集是 <math>S</math> 的元素,且对于任意 <math>x\in S,x\cup\{x\}\in S</math> # 选择公理:对于任意集合 <math>S</math> ,存在一个选择函数使得 <math>f(S)\in S</math>
返回
ZFC公理体系
。
查看“︁ZFC公理体系”︁的源代码
来自Googology Wiki