打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁Laver Table”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
Laver Table
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
Laver 表(Laver Table)是 Richard Laver 在 1992 年提出的一个增长速度很快的表。<ref>Laver, Richard. [http://arxiv.org/abs/math.LO/9204204 On the Algebra of Elementary Embeddings of a Rank into Itself]. Retrieved 2014-08-23. </ref> === 定义 === 考虑作用于 <math>\{1,\cdots,2^n\}</math> 上的二元运算 <math>\star_n</math>,它满足如下条件: \begin{eqnarray*}a \star_n 0 & = & 0 \\a \star_n 1 & = & (a+1) \mod 2^n \\a \star_n i & = & (a \star_n (i-1)) \star_n (a \star_n 1) \ (i \neq 0,1)\end{eqnarray*} Laver 表 <math>A_n</math> 定义为唯一的取值为 <math>a\ \star_n\ b</math> 的 <math>2^n\times2^n</math> 表。Laver 表可以用此<ref>猫山にゃん太. Laver table - レイバーのテーブル[EB/OL]. 2022. [https://n-nekoyama.github.io/googology/laver_table/. https://n-nekoyama.github.io/googology/laver_table/.]</ref>进行计算。 注意这一定理仅适用于 2 的幂。假如我们考虑的二元运算作用于一般的 <math>\{1,\cdots,a\}</math> 上,其中 <math>a\neq 2^n</math>,则这样的二元运算 <math>\star_n</math> 将不是存在且唯一的。 我们定义如下函数的周期为 p(n): * <math>2^n\rightarrow2^n</math> * <math>a\mapsto1\star_na</math> 定义 q(n) 为函数 p(n) 的逆,即 <math>q(n)=\min\{N|p(N)\geq2^n\}</math>。 === 取值 === ==== Laver 表 ==== 以下展示了前 6 个 Laver 表。<ref>Dehornoy, Patrick. [https://web.archive.org/web/20230429003832/https://www.lmno.cnrs.fr/archives/dehornoy/Talks/Dyz.pdf Laver Tables] (starting on slide 26). Retrieved 2018-12-11.</ref> {| class="wikitable mw-collapsible mw-collapsed" |+<math>\star_0</math> 的 Laver 表 ! !1 |- |'''1''' |1 |} {| class="wikitable mw-collapsible mw-collapsed" |+<math>\star_1</math> 的 Laver 表 ! !1 !2 |- |'''1''' |2 |2 |- |'''2''' |1 |2 |} {| class="wikitable mw-collapsible mw-collapsed" |+<math>\star_2</math> 的 Laver 表 ! !1 !2 !3 !4 |- |1 |2 |4 |2 |4 |- |2 |3 |4 |2 |4 |- |3 |4 |4 |4 |4 |- |4 |1 |2 |3 |4 |} {| class="wikitable mw-collapsible mw-collapsed" |+<math>\star_3</math> 的 Laver 表 |- ! !1 !2 !3 !4 !5 !6 !7 |8 |- !1 |2 |4 |6 |8 |2 |4 |6 |8 |- !2 |3 |4 |7 |8 |3 |4 |7 |8 |- !3 |4 |8 |4 |8 |4 |8 |4 |8 |- !4 |5 |6 |7 |8 |5 |6 |7 |8 |- !5 |6 |8 |6 |8 |6 |8 |6 |8 |- !6 |7 |8 |7 |8 |7 |8 |7 |8 |- !7 |8 |8 |8 |8 |8 |8 |8 |8 |- !8 |1 |2 |3 |4 |5 |6 |7 |8 |} {| class="wikitable mw-collapsible mw-collapsed" |+<math>\star_4</math> 的 Laver 表 |- ! !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 |16 |- !1 |2 |12 |14 |16 |2 |12 |14 |16 |2 |12 |14 |16 |2 |12 |14 |16 |- !2 |3 |12 |15 |16 |3 |12 |15 |16 |3 |12 |15 |16 |3 |12 |15 |16 |- !3 |4 |8 |12 |16 |4 |8 |12 |16 |4 |8 |12 |16 |4 |8 |12 |16 |- !4 |5 |6 |7 |8 |13 |14 |15 |16 |5 |6 |7 |8 |13 |14 |15 |16 |- !5 |6 |8 |14 |16 |6 |8 |14 |16 |6 |8 |14 |16 |6 |8 |14 |16 |- !6 |7 |8 |15 |16 |7 |8 |15 |16 |7 |8 |15 |16 |7 |8 |15 |16 |- !7 |8 |16 |8 |16 |8 |16 |8 |16 |8 |16 |8 |16 |8 |16 |8 |16 |- !8 |9 |10 |11 |12 |13 |14 |15 |16 |9 |10 |11 |12 |13 |14 |15 |16 |- !9 |10 |12 |14 |16 |10 |12 |14 |16 |10 |12 |14 |16 |10 |12 |14 |16 |- !10 |11 |12 |15 |16 |11 |12 |15 |16 |11 |12 |15 |16 |11 |12 |15 |16 |- !11 |12 |16 |12 |16 |12 |16 |12 |16 |12 |16 |12 |16 |12 |16 |12 |16 |- !12 |13 |14 |15 |16 |13 |14 |15 |16 |13 |14 |15 |16 |13 |14 |15 |16 |- !13 |14 |16 |14 |16 |14 |16 |14 |16 |14 |16 |14 |16 |14 |16 |14 |16 |- !14 |15 |16 |15 |16 |15 |16 |15 |16 |15 |16 |15 |16 |15 |16 |15 |16 |- !15 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |16 |- !16 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |} {| class="wikitable mw-collapsible mw-collapsed" |+<math>\star_5</math> 的 Laver 表 |- ! !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 !16 !17 !18 !19 !20 !21 !22 !23 !24 !25 !26 !27 !28 !29 !30 !31 !32 |- !1 |2 |12 |14 |16 |18 |28 |30 |32 |2 |12 |14 |16 |18 |28 |30 |32 |2 |12 |14 |16 |18 |28 |30 |32 |2 |12 |14 |16 |18 |28 |30 |32 |- !2 |3 |12 |15 |16 |19 |28 |31 |32 |3 |12 |15 |16 |19 |28 |31 |32 |3 |12 |15 |16 |19 |28 |31 |32 |3 |12 |15 |16 |19 |28 |31 |32 |- !3 |4 |8 |12 |16 |20 |24 |28 |32 |4 |8 |12 |16 |20 |24 |28 |32 |4 |8 |12 |16 |20 |24 |28 |32 |4 |8 |12 |16 |20 |24 |28 |32 |- !4 |5 |6 |7 |8 |13 |14 |15 |16 |21 |22 |23 |24 |29 |30 |31 |32 |5 |6 |7 |8 |13 |14 |15 |16 |21 |22 |23 |24 |29 |30 |31 |32 |- !5 |6 |24 |30 |32 |6 |24 |30 |32 |6 |24 |30 |32 |6 |24 |30 |32 |6 |24 |30 |32 |6 |24 |30 |32 |6 |24 |30 |32 |6 |24 |30 |32 |- !6 |7 |24 |31 |32 |7 |24 |31 |32 |7 |24 |31 |32 |7 |24 |31 |32 |7 |24 |31 |32 |7 |24 |31 |32 |7 |24 |31 |32 |7 |24 |31 |32 |- !7 |8 |16 |24 |32 |8 |16 |24 |32 |8 |16 |24 |32 |8 |16 |24 |32 |8 |16 |24 |32 |8 |16 |24 |32 |8 |16 |24 |32 |8 |16 |24 |32 |- !8 |9 |10 |11 |12 |13 |14 |15 |16 |25 |26 |27 |28 |29 |30 |31 |32 |9 |10 |11 |12 |13 |14 |15 |16 |25 |26 |27 |28 |29 |30 |31 |32 |- !9 |10 |28 |30 |32 |10 |28 |30 |32 |10 |28 |30 |32 |10 |28 |30 |32 |10 |28 |30 |32 |10 |28 |30 |32 |10 |28 |30 |32 |10 |28 |30 |32 |- !10 |11 |28 |31 |32 |11 |28 |31 |32 |11 |28 |31 |32 |11 |28 |31 |32 |11 |28 |31 |32 |11 |28 |31 |32 |11 |28 |31 |32 |11 |28 |31 |32 |- !11 |12 |16 |28 |32 |12 |16 |28 |32 |12 |16 |28 |32 |12 |16 |28 |32 |12 |16 |28 |32 |12 |16 |28 |32 |12 |16 |28 |32 |12 |16 |28 |32 |- !12 |13 |14 |15 |16 |29 |30 |31 |32 |13 |14 |15 |16 |29 |30 |31 |32 |13 |14 |15 |16 |29 |30 |31 |32 |13 |14 |15 |16 |29 |30 |31 |32 |- !13 |14 |16 |30 |32 |14 |16 |30 |32 |14 |16 |30 |32 |14 |16 |30 |32 |14 |16 |30 |32 |14 |16 |30 |32 |14 |16 |30 |32 |14 |16 |30 |32 |- !14 |15 |16 |31 |32 |15 |16 |31 |32 |15 |16 |31 |32 |15 |16 |31 |32 |15 |16 |31 |32 |15 |16 |31 |32 |15 |16 |31 |32 |15 |16 |31 |32 |- !15 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |16 |32 |- !16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32 |- !17 |18 |28 |30 |32 |18 |28 |30 |32 |18 |28 |30 |32 |18 |28 |30 |32 |18 |28 |30 |32 |18 |28 |30 |32 |18 |28 |30 |32 |18 |28 |30 |32 |- !18 |19 |28 |31 |32 |19 |28 |31 |32 |19 |28 |31 |32 |19 |28 |31 |32 |19 |28 |31 |32 |19 |28 |31 |32 |19 |28 |31 |32 |19 |28 |31 |32 |- !19 |20 |24 |28 |32 |20 |24 |28 |32 |20 |24 |28 |32 |20 |24 |28 |32 |20 |24 |28 |32 |20 |24 |28 |32 |20 |24 |28 |32 |20 |24 |28 |32 |- !20 |21 |22 |23 |24 |29 |30 |31 |32 |21 |22 |23 |24 |29 |30 |31 |32 |21 |22 |23 |24 |29 |30 |31 |32 |21 |22 |23 |24 |29 |30 |31 |32 |- !21 |22 |24 |30 |32 |22 |24 |30 |32 |22 |24 |30 |32 |22 |24 |30 |32 |22 |24 |30 |32 |22 |24 |30 |32 |22 |24 |30 |32 |22 |24 |30 |32 |- !22 |23 |24 |31 |32 |23 |24 |31 |32 |23 |24 |31 |32 |23 |24 |31 |32 |23 |24 |31 |32 |23 |24 |31 |32 |23 |24 |31 |32 |23 |24 |31 |32 |- !23 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |24 |32 |- !24 |25 |26 |27 |28 |29 |30 |31 |32 |25 |26 |27 |28 |29 |30 |31 |32 |25 |26 |27 |28 |29 |30 |31 |32 |25 |26 |27 |28 |29 |30 |31 |32 |- !25 |26 |28 |30 |32 |26 |28 |30 |32 |26 |28 |30 |32 |26 |28 |30 |32 |26 |28 |30 |32 |26 |28 |30 |32 |26 |28 |30 |32 |26 |28 |30 |32 |- !26 |27 |28 |31 |32 |27 |28 |31 |32 |27 |28 |31 |32 |27 |28 |31 |32 |27 |28 |31 |32 |27 |28 |31 |32 |27 |28 |31 |32 |27 |28 |31 |32 |- !27 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |28 |32 |- !28 |29 |30 |31 |32 |29 |30 |31 |32 |29 |30 |31 |32 |29 |30 |31 |32 |29 |30 |31 |32 |29 |30 |31 |32 |29 |30 |31 |32 |29 |30 |31 |32 |- !29 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |30 |32 |- !30 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |31 |32 |- !31 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |- !32 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32 |} === q 函数 === 事实上 <math>p(n)</math> 是一个增长速度非常缓慢的函数。 我们有 * <math>q(0) = 0</math> * <math>q(1) = 2</math> * <math>q(2)=3</math> * <math>q(3)=5</math> * <math>q(4)=9</math> * <math>q(5) > f_9 (f_8 (f_8(254))) ,</math>,其中这里的 [[增长层级#快速增长层级|FGH]] 改版定义为 <math>f_{\alpha+1}(n)=f_\alpha^{n+1}(n)</math> === 强度 === Dougherty 证明了 <math>q^n(1) > f_{\omega+1} (\lfloor log3 n\rfloor - 1)</math>。<ref>Dougherty, Randall. [http://arxiv.org/abs/math.LO/9205202 Critical points in an algebra of elementary embeddings.] Retrieved 2014-08-23.</ref> 事实上,二元关系 <math>\star_n</math> 的存在唯一性以及函数 p(n) 的发散性并非显然的结果,它实际上与集合论中的嵌入有着深刻的联系。 事实上,p(n) 发散的结论是在 I3 公理下才能够得到证明的。因此,作为一个快速增长的函数,q(n) 的完全性(即在所有自然数 n 下都有定义)在 ZFC+I3 下得到了证明。用 [[googology]] 更熟悉(但是并不严格)的说法,我们目前认为 q(n) 的增长率的上界为 [[证明论序数|PTO(ZFC+I3)]]。 == 参考资料 == {{默认排序:相关问题}} [[分类:记号]]
返回
Laver Table
。
查看“︁Laver Table”︁的源代码
来自Googology Wiki