打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁BMS分析Part1:0~BO”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
BMS分析Part1:0~BO
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目展示[[Bashicu矩阵|BMS]]强度分析的第一部分 {| class="wikitable" |BMS |向上投影递归化 |- |0 |0 |- |(0)(0) |ψ(0) |- |(0)(1) |ψ(1) |- |(0)(1)(0) |ψ(1)+ψ(0) |- |(0)(1)(0)(1) |ψ(1)*2 |- |(0)(1)(1) |ψ(2) |- |(0)(1)(2) |ψ(ω) |- |(0)(1)(2)(0) |ψ(ω)+ψ(0) |- |(0)(1)(2)(0)(1) |ψ(ω)+ψ(1) |- |(0)(1)(2)(0)(1)(1) |ψ(ω)+ψ(2) |- |(0)(1)(2)(0)(1)(2) |ψ(ω)*2 |- |(0)(1)(2)(1) |ψ(ω+1) |- |(0)(1)(2)(1)(2) |ψ(ω*2)=ψ(ψ(1)*2) |- |(0)(1)(2)(2) |ψ(ψ(2)) |- |(0)(1)(2)(2)(1) |ψ(ψ(2)+ψ(0)) |- |(0)(1)(2)(2)(1)(2) |ψ(ψ(2)+ψ(1)) |- |(0)(1)(2)(2)(1)(2)(2) |ψ(ψ(2)*2) |- |(0)(1)(2)(2)(2) |ψ(ψ(3)) |- |(0)(1)(2)(3) |ψ(ψ(ω)) |- |(0)(1)(2)(3)(2) |ψ(ψ(ω+1)) |- |(0)(1)(2)(3)(2)(3) |ψ(ψ(ψ(1)*2)) |- |(0)(1)(2)(3)(3) |ψ(ψ(ψ(2))) |- |(0)(1)(2)(3)(4) |ψ(ψ(ψ(ω))) |- |(0)(1,1) |ψ(Ω)=ε0 |- |(0)(1,1)(0)(1,1) |ψ(Ω)*2 |- |(0)(1,1)(1) |ψ(Ω+1) |- |(0)(1,1)(1)(1) |ψ(Ω+2) |- |(0)(1,1)(1)(2) |ψ(Ω+ω) |- |(0)(1,1)(1)(2)(1)(2) |ψ(Ω+ω*2) |- |(0)(1,1)(1)(2)(2) |ψ(Ω+ω^2)=ψ(Ω+ψ(2)) |- |(0)(1,1)(1)(2)(3) |ψ(Ω+ψ(ω)) |- |(0)(1,1)(1)(2)(3)(2) |ψ(Ω+ψ(ω+1)) |- |(0)(1,1)(1)(2)(3)(2)(3) |ψ(Ω+ψ(ω*2)) |- |(0)(1,1)(1)(2)(3)(3) |ψ(Ω+ψ(ψ(2))) |- |(0)(1,1)(1)(2)(3)(4) |ψ(Ω+ψ(ψ(ω))) |- |(0)(1,1)(1)(2,1) |ψ(Ω+ψ(Ω)) |- |(0)(1,1)(1)(2,1)(0)(1,1)(1)(2,1) |ψ(Ω+ψ(Ω))*2 |- |(0)(1,1)(1)(2,1)(1) |ψ(Ω+ψ(Ω)+1) |- |(0)(1,1)(1)(2,1)(1)(2) |ψ(Ω+ψ(Ω)+ω) |- |(0)(1,1)(1)(2,1)(1)(2,1) |ψ(Ω+ψ(Ω)*2) |- |(0)(1,1)(1)(2,1)(2) |ψ(Ω+ψ(Ω+1)) |- |(0)(1,1)(1)(2,1)(2)(1)(2,1)(2) |ψ(Ω+ψ(Ω+1)*2) |- |(0)(1,1)(1)(2,1)(2)(2) |ψ(Ω+ψ(Ω+2)) |- |(0)(1,1)(1)(2,1)(2)(3) |ψ(Ω+ψ(Ω+ω)) |- |(0)(1,1)(1)(2,1)(2)(3,1) |ψ(Ω+ψ(Ω+ψ(Ω))) |- |(0)(1,1)(1,1) |ψ(Ω*2)=ε1 |- |(0)(1,1)(1,1)(1) |ψ(Ω*2+1) |- |(0)(1,1)(1,1)(1)(2,1) |ψ(Ω*2+ψ(Ω)) |- |(0)(1,1)(1,1)(1)(2,1)(2) |ψ(Ω*2+ψ(Ω+1)) |- |(0)(1,1)(1,1)(1)(2,1)(2)(3,1) |ψ(Ω*2+ψ(Ω+ψ(Ω))) |- |(0)(1,1)(1,1)(1)(2,1)(2,1) |ψ(Ω*2+ψ(Ω*2)) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(1)(2,1)(2,1) |ψ(Ω*2+ψ(Ω*2)*2) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(2) |ψ(Ω*2+ψ(Ω*2+1)) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(1)(2,1)(2,1)(2) |ψ(Ω*2+ψ(Ω*2+1)*2) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(2) |ψ(Ω*2+ψ(Ω*2+2)) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3) |ψ(Ω*2+ψ(Ω*2+ω)) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1) |ψ(Ω*2+ψ(Ω*2+ψ(Ω))) |- |(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1) |ψ(Ω*2+ψ(Ω*2+ψ(Ω*2))) |- |(0)(1,1)(1,1)(1,1) |ψ(Ω*3)=ε2 |- |(0)(1,1)(1,1)(1,1)(1)(2,1)(2,1)(2,1) |ψ(Ω*3+ψ(Ω*3)) |- |(0)(1,1)(1,1)(1,1)(1,1) |ψ(Ω*4) |- |(0)(1,1)(2) |ψ(Ω*ω) |- |(0)(1,1)(2)(1) |ψ(Ω*ω+1) |- |(0)(1,1)(2)(1)(2) |ψ(Ω*ω+ω) |- |(0)(1,1)(2)(1)(2,1) |ψ(Ω*ω+ψ(Ω)) |- |(0)(1,1)(2)(1)(2,1)(3) |ψ(Ω*ω+ψ(Ω*ω)) |- |(0)(1,1)(2)(1)(2,1)(3)(1)(2,1)(3) |ψ(Ω*ω+ψ(Ω*ω)*2) |- |(0)(1,1)(2)(1)(2,1)(3)(2) |ψ(Ω*ω+ψ(Ω*ω+1)) |- |(0)(1,1)(2)(1)(2,1)(3)(2)(3,1) |ψ(Ω*ω+ψ(Ω*ω+ψ(Ω))) |- |(0)(1,1)(2)(1)(2,1)(3)(2)(3,1)(4) |ψ(Ω*ω+ψ(Ω*ω+ψ(Ω*ω))) |- |(0)(1,1)(2)(1,1) |ψ(Ω*(ω+1)) |- |(0)(1,1)(2)(1,1)(2) |ψ(Ω*ω*2) |- |(0)(1,1)(2)(2) |ψ(Ω*ψ(2)) |- |(0)(1,1)(2)(3) |ψ(Ω*ψ(ω)) |- |(0)(1,1)(2)(3,1) |ψ(Ω*ψ(Ω)) |- |(0)(1,1)(2)(3,1)(1,1)(2)(3,1) |ψ(Ω*ψ(Ω)*2) |- |(0)(1,1)(2)(3,1)(2) |ψ(Ω*ψ(Ω+1)) |- |(0)(1,1)(2)(3,1)(2)(3) |ψ(Ω*ψ(Ω+ω)) |- |(0)(1,1)(2)(3,1)(2)(3,1) |ψ(Ω*ψ(Ω+ψ(Ω))) |- |(0)(1,1)(2)(3,1)(2)(3,1)(2) |ψ(Ω*ψ(Ω+ψ(Ω)+1)) |- |(0)(1,1)(2)(3,1)(2)(3,1)(2)(3,1) |ψ(Ω*ψ(Ω+ψ(Ω)*2)) |- |(0)(1,1)(2)(3,1)(3) |ψ(Ω*ψ(Ω+ψ(Ω+1))) |- |(0)(1,1)(2)(3,1)(3)(4,1) |ψ(Ω*ψ(Ω+ψ(Ω+ψ(Ω)))) |- |(0)(1,1)(2)(3,1)(3,1) |ψ(Ω*ψ(Ω*2)) |- |(0)(1,1)(2)(3,1)(4) |ψ(Ω*ψ(Ω*ω)) |- |(0)(1,1)(2)(3,1)(4)(5) |ψ(Ω*ψ(Ω*ψ(ω))) |- |(0)(1,1)(2)(3,1)(4)(5,1) |ψ(Ω*ψ(Ω*ψ(Ω))) |- |(0)(1,1)(2,1) |ψ(Ω^2) |- |(0)(1,1)(2,1)(1) |ψ(Ω^2+1) |- |(0)(1,1)(2,1)(1)(2,1) |ψ(Ω^2+ψ(Ω)) |- |(0)(1,1)(2,1)(1)(2,1)(3) |ψ(Ω^2+ψ(Ω*ω)) |- |(0)(1,1)(2,1)(1)(2,1)(3,1) |ψ(Ω^2+ψ(Ω^2)) |- |(0)(1,1)(2,1)(1)(2,1)(3,1)(2) |ψ(Ω^2+ψ(Ω^2+1)) |- |(0)(1,1)(2,1)(1)(2,1)(3,1)(2)(3,1) |ψ(Ω^2+ψ(Ω^2+ψ(Ω))) |- |(0)(1,1)(2,1)(1)(2,1)(3,1)(2)(3,1)(4,1) |ψ(Ω^2+ψ(Ω^2+ψ(Ω^2))) |- |(0)(1,1)(2,1)(1,1) |ψ(Ω^2+Ω) |- |(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1) |ψ(Ω^2+Ω+ψ(Ω^2)) |- |(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1)(2,1) |ψ(Ω^2+Ω+ψ(Ω^2+Ω)) |- |(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1)(2,1)(2) |ψ(Ω^2+Ω+ψ(Ω^2+Ω+1)) |- |(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1)(2,1)(2)(3,1) |ψ(Ω^2+Ω+ψ(Ω^2+Ω+ψ(Ω))) |- |(0)(1,1)(2,1)(1,1)(1,1) |ψ(Ω^2+Ω*2) |- |(0)(1,1)(2,1)(1,1)(2) |ψ(Ω^2+Ω*ω) |- |(0)(1,1)(2,1)(1,1)(2)(1,1)(2) |ψ(Ω^2+Ω*ω*2) |- |(0)(1,1)(2,1)(1,1)(2)(2) |ψ(Ω^2+Ω*ψ(2)) |- |(0)(1,1)(2,1)(1,1)(2)(3) |ψ(Ω^2+Ω*ψ(ω)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1) |ψ(Ω^2+Ω*ψ(Ω)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(2) |ψ(Ω^2+Ω*ψ(Ω+1)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(2)(3,1) |ψ(Ω^2+Ω*ψ(Ω+ψ(Ω))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(3) |ψ(Ω^2+Ω*ψ(Ω+ψ(Ω+1))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(3)(4,1) |ψ(Ω^2+Ω*ψ(Ω+ψ(Ω+ψ(Ω)))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(3,1) |ψ(Ω^2+Ω*ψ(Ω*2)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4) |ψ(Ω^2+Ω*ψ(Ω*ω)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4)(5,1) |ψ(Ω^2+Ω*ψ(Ω*ψ(Ω))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4)(5,1)(6) |ψ(Ω^2+Ω*ψ(Ω*ψ(Ω*ω))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1) |ψ(Ω^2+Ω*ψ(Ω^2)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(2) |ψ(Ω^2+Ω*ψ(Ω^2+1)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(2)(3,1)(4,1) |ψ(Ω^2+Ω*ψ(Ω^2+ψ(Ω^2))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3) |ψ(Ω^2+Ω*ψ(Ω^2+ψ(Ω^2+1))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1) |ψ(Ω^2+Ω*ψ(Ω^2+Ω)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4) |ψ(Ω^2+Ω*ψ(Ω^2+Ω*ω)) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4)(5,1) |ψ(Ω^2+Ω*ψ(Ω^2+Ω*ψ(Ω))) |- |(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4)(5,1)(6,1) |ψ(Ω^2+Ω*ψ(Ω^2+Ω*ψ(Ω^2))) |- |(0)(1,1)(2,1)(1,1)(2,1) |ψ(Ω^2*2) |- |(0)(1,1)(2,1)(1,1)(2,1)(1)(2,1)(3,1)(2,1)(3,1) |ψ(Ω^2*2+ψ(Ω^2*2)) |- |(0)(1,1)(2,1)(1,1)(2,1)(1,1) |ψ(Ω^2+Ω*2) |- |(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2) |ψ(Ω^2+Ω*ω) |- |(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2)(3,1)(4,1) |ψ(Ω^2*2+Ω*ψ(Ω^2)) |- |(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4,1) |ψ(Ω^2*2+Ω*ψ(Ω^2*2)) |- |(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1) |ψ(Ω^2*3) |- |(0)(1,1)(2,1)(2) |ψ(Ω^2*ω) |- |(0)(1,1)(2,1)(2)(1)(2,1)(3,1)(3) |ψ(Ω^2*ω+ψ(Ω^2*ω)) |- |(0)(1,1)(2,1)(2)(1,1) |ψ(Ω^2*ω+Ω) |- |(0)(1,1)(2,1)(2)(1,1)(2,1) |ψ(Ω^2*(ω+1)) |- |(0)(1,1)(2,1)(2)(1,1)(2,1)(2) |ψ(Ω^2*ω*2) |- |(0)(1,1)(2,1)(2)(2) |ψ(Ω^2*ψ(2)) |- |(0)(1,1)(2,1)(2)(3) |ψ(Ω^2*ψ(ω)) |- |(0)(1,1)(2,1)(2)(3,1) |ψ(Ω^2*ψ(Ω)) |- |(0)(1,1)(2,1)(2)(3,1)(3,1) |ψ(Ω^2*ψ(Ω*2)) |- |(0)(1,1)(2,1)(2)(3,1)(4) |ψ(Ω^2*ψ(Ω*ω)) |- |(0)(1,1)(2,1)(2)(3,1)(4)(5,1) |ψ(Ω^2*ψ(Ω*ψ(Ω))) |- |(0)(1,1)(2,1)(2)(3,1)(4,1) |ψ(Ω^2*ψ(Ω^2)) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(1,1)(2,1)(2)(3,1)(4,1) |ψ(Ω^2*ψ(Ω^2)*2) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(2) |ψ(Ω^2*ψ(Ω^2+1)) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(2)(3,1)(4,1) |ψ(Ω^2*ψ(Ω^2+ψ(Ω^2))) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(3) |ψ(Ω^2*ψ(Ω^2+ψ(Ω^2+1))) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(3,1) |ψ(Ω^2*ψ(Ω^2+Ω)) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(3,1)(4) |ψ(Ω^2*ψ(Ω^2+Ω*ω)) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(3,1)(4)(5,1)(6,1)(5,1) |ψ(Ω^2*ψ(Ω^2+Ω*ψ(Ω^2+Ω))) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(3,1)(4,1) |ψ(Ω^2*ψ(Ω^2*2)) |- |(0)(1,1)(2,1)(2)(3,1)(4,1)(4) |ψ(Ω^2*ψ(Ω^2*ω)) |- |(0)(1,1)(2,1)(2,1) |ψ(Ω^3)=η0 |- |(0)(1,1)(2,1)(2,1)(1,1) |ψ(Ω^3+Ω) |- |(0)(1,1)(2,1)(2,1)(1,1)(2)(3,1)(4,1)(4,1) |ψ(Ω^3+Ω*ψ(Ω^3)) |- |(0)(1,1)(2,1)(2,1)(1,1)(2,1) |ψ(Ω^3+Ω^2) |- |(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2) |ψ(Ω^3+Ω^2*ω) |- |(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2)(3,1)(4,1)(4,1) |ψ(Ω^3+Ω^2*ψ(Ω^3)) |- |(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2)(3,1)(4,1)(4,1)(3,1)(4,1)(4) |ψ(Ω^3+Ω^2*ψ(Ω^3+Ω^2*ω)) |- |(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1) |ψ(Ω^3*2) |- |(0)(1,1)(2,1)(2,1)(2) |ψ(Ω^3*ω) |- |(0)(1,1)(2,1)(2,1)(2)(3,1) |ψ(Ω^3*ψ(Ω)) |- |(0)(1,1)(2,1)(2,1)(2)(3,1)(4,1)(4,1) |ψ(Ω^3*ψ(Ω^3)) |- |(0)(1,1)(2,1)(2,1)(2,1) |ψ(Ω^4) |- |(0)(1,1)(2,1)(3) |ψ(Ω^ω)=φ(ω,0) |- |(0)(1,1)(2,1)(3)(1) |ψ(Ω^ω+1) |- |(0)(1,1)(2,1)(3)(1)(2,1)(3,1)(4) |ψ(Ω^ω+ψ(Ω^ω)) |- |(0)(1,1)(2,1)(3)(1,1) |ψ(Ω^ω+Ω) |- |(0)(1,1)(2,1)(3)(1,1)(2,1) |ψ(Ω^ω+Ω^2) |- |(0)(1,1)(2,1)(3)(1,1)(2,1)(3) |ψ(Ω^ω*2) |- |(0)(1,1)(2,1)(3)(2) |ψ(Ω^ω*ω) |- |(0)(1,1)(2,1)(3)(2)(3,1) |ψ(Ω^ω*ψ(Ω)) |- |(0)(1,1)(2,1)(3)(2)(3,1)(4,1)(5) |ψ(Ω^ω*ψ(Ω^ω)) |- |(0)(1,1)(2,1)(3)(2)(3,1)(4,1)(5)(4) |ψ(Ω^ω*ψ(Ω^ω*ω)) |- |(0)(1,1)(2,1)(3)(2,1) |ψ(Ω^(ω+1)) |- |(0)(1,1)(2,1)(3)(2,1)(3) |ψ(Ω^(ω*2)) |- |(0)(1,1)(2,1)(3)(3) |ψ(Ω^ψ(2)) |- |(0)(1,1)(2,1)(3)(4) |ψ(Ω^ψ(ω)) |- |(0)(1,1)(2,1)(3)(4,1) |ψ(Ω^ψ(Ω)) |- |(0)(1,1)(2,1)(3)(4,1)(3)(4,1) |ψ(Ω^ψ(Ω+ψ(Ω))) |- |(0)(1,1)(2,1)(3)(4,1)(4,1) |ψ(Ω^ψ(Ω*2)) |- |(0)(1,1)(2,1)(3)(4,1)(5,1) |ψ(Ω^ψ(Ω^2)) |- |(0)(1,1)(2,1)(3)(4,1)(5,1)(6) |ψ(Ω^ψ(Ω^ω)) |- |(0)(1,1)(2,1)(3,1) |ψ(Ω^Ω)=Γ0 |- |(0)(1,1)(2,1)(3,1)(1) |ψ(Ω^Ω+1) |- |(0)(1,1)(2,1)(3,1)(1)(2,1)(3,1)(4,1) |ψ(Ω^Ω+ψ(Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(1)(2,1)(3,1)(4,1)(2) |ψ(Ω^Ω+ψ(Ω^Ω+1)) |- |(0)(1,1)(2,1)(3,1)(1,1) |ψ(Ω^Ω+Ω) |- |(0)(1,1)(2,1)(3,1)(1,1)(2) |ψ(Ω^Ω+Ω*ω) |- |(0)(1,1)(2,1)(3,1)(1,1)(2)(3,1)(4,1)(5,1) |ψ(Ω^Ω+Ω*ψ(Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1) |ψ(Ω^Ω+Ω^2) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(2)(3,1)(4,1)(5,1)(3,1)(4,1) |ψ(Ω^Ω+Ω^2*ψ(Ω^Ω+Ω^2)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(2,1) |ψ(Ω^Ω+Ω^3) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3) |ψ(Ω^Ω+Ω^ω) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1) |ψ(Ω^Ω+Ω^ψ(Ω)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1) |ψ(Ω^Ω+Ω^ψ(Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1)(3) |ψ(Ω^Ω+Ω^ψ(Ω^Ω+1)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1)(4,1) |ψ(Ω^Ω+Ω^ψ(Ω^Ω+Ω)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1)(4,1)(5,1)(6) |ψ(Ω^Ω+Ω^ψ(Ω^Ω+Ω^ω)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1)(4,1)(5,1)(6)(7,1) |ψ(Ω^Ω+Ω^ψ(Ω^Ω+Ω^ψ(Ω))) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1) |ψ(Ω^Ω*2) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3) |ψ(Ω^Ω*2+Ω^ω) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1)(4,1)(5,1)(6,1) |ψ(Ω^Ω*2+Ω^ψ(Ω^Ω*2)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1) |ψ(Ω^Ω*3) |- |(0)(1,1)(2,1)(3,1)(2) |ψ(Ω^Ω*ω) |- |(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1) |ψ(Ω^Ω*ψ(Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(2,1) |ψ(Ω^(Ω+1)) |- |(0)(1,1)(2,1)(3,1)(2,1)(1,1)(2,1)(3,1) |ψ(Ω^(Ω+1)+Ω^Ω) |- |(0)(1,1)(2,1)(3,1)(2,1)(1,1)(2,1)(3,1)(2) |ψ(Ω^(Ω+1)+Ω^Ω*ω) |- |(0)(1,1)(2,1)(3,1)(2,1)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1) |ψ(Ω^(Ω+1)+Ω^Ω*ψ(Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(2,1)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)(4,1) |ψ(Ω^(Ω+1)+Ω^Ω*ψ(Ω^(Ω+1))) |- |(0)(1,1)(2,1)(3,1)(2,1)(1,1)(2,1)(3,1)(2,1) |ψ(Ω^(Ω+1)*2) |- |(0)(1,1)(2,1)(3,1)(2,1)(2) |ψ(Ω^(Ω+1)*ω) |- |(0)(1,1)(2,1)(3,1)(2,1)(2)(3) |ψ(Ω^(Ω+1)*ψ(ω)) |- |(0)(1,1)(2,1)(3,1)(2,1)(2)(3,1)(4,1)(5,1)(4,1) |ψ(Ω^(Ω+1)*ψ(Ω^(Ω+1))) |- |(0)(1,1)(2,1)(3,1)(2,1)(2,1) |ψ(Ω^(Ω+2)) |- |(0)(1,1)(2,1)(3,1)(2,1)(3) |ψ(Ω^(Ω+ω)) |- |(0)(1,1)(2,1)(3,1)(2,1)(3)(4,1)(5,1)(6,1)(5,1)(6) |ψ(Ω^(Ω+ψ(Ω^(Ω+ω)))) |- |(0)(1,1)(2,1)(3,1)(2,1)(3,1) |ψ(Ω^(Ω*2)) |- |(0)(1,1)(2,1)(3,1)(3) |ψ(Ω^(Ω*ω)) |- |(0)(1,1)(2,1)(3,1)(3)(4,1)(5,1)(6,1)(6) |ψ(Ω^(Ω*ψ(Ω^(Ω*ω)))) |- |(0)(1,1)(2,1)(3,1)(3,1) |ψ(Ω^Ω^2) |- |(0)(1,1)(2,1)(3,1)(3,1)(1,1)(2,1)(3,1) |ψ(Ω^Ω^2+Ω^Ω) |- |(0)(1,1)(2,1)(3,1)(3,1)(1,1)(2,1)(3,1)(3) |ψ(Ω^Ω^2+Ω^(Ω*ω)) |- |(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(3)(4,1)(5,1)(6,1)(6,1) |ψ(Ω^Ω^2+Ω^(Ω*ψ(Ω^Ω^2))) |- |(0)(1,1)(2,1)(3,1)(3,1)(1,1)(2,1)(3,1)(3,1) |ψ(Ω^Ω^2*2) |- |(0)(1,1)(2,1)(3,1)(3,1)(2) |ψ(Ω^Ω^2*ω) |- |(0)(1,1)(2,1)(3,1)(3,1)(2)(3,1)(4,1)(5,1)(5,1)(4) |ψ(Ω^Ω^2*ψ(Ω^Ω^2*ω)) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1) |ψ(Ω^(Ω^2+1)) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1)(3) |ψ(Ω^(Ω^2+ω)) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1)(3)(4,1)(5,1)(6,1)(6,1) |ψ(Ω^(Ω^2+ψ(Ω^Ω^2))) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1)(3,1) |ψ(Ω^(Ω^2+Ω)) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1)(3,1)(3) |ψ(Ω^(Ω^2+Ω*ω)) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1)(3,1)(3)(4,1)(5,1)(6,1)(6,1) |ψ(Ω^(Ω^2+Ω*ψ(Ω^Ω^2))) |- |(0)(1,1)(2,1)(3,1)(3,1)(2,1)(3,1)(3,1) |ψ(Ω^(Ω^2*2)) |- |(0)(1,1)(2,1)(3,1)(3,1)(3) |ψ(Ω^(Ω^2*ω)) |- |(0)(1,1)(2,1)(3,1)(3,1)(3)(4,1)(5,1)(6,1)(6,1) |ψ(Ω^(Ω^2*ψ(Ω^Ω^2))) |- |(0)(1,1)(2,1)(3,1)(3,1)(3,1) |ψ(Ω^Ω^3) |- |(0)(1,1)(2,1)(3,1)(4) |ψ(Ω^Ω^ω)=SVO |- |(0)(1,1)(2,1)(3,1)(4)(1,1)(2,1)(3,1)(4) |ψ(Ω^Ω^ω*2) |- |(0)(1,1)(2,1)(3,1)(4)(2,1) |ψ(Ω^(Ω^ω+1)) |- |(0)(1,1)(2,1)(3,1)(4)(2,1)(3,1)(4) |ψ(Ω^(Ω^ω*2)) |- |(0)(1,1)(2,1)(3,1)(4)(3) |ψ(Ω^(Ω^ω*ω)) |- |(0)(1,1)(2,1)(3,1)(4)(3,1) |ψ(Ω^Ω^(ω+1)) |- |(0)(1,1)(2,1)(3,1)(4)(4) |ψ(Ω^Ω^ψ(2)) |- |(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)(8) |ψ(Ω^Ω^ψ(Ω^Ω^ω)) |- |(0)(1,1)(2,1)(3,1)(4,1) |ψ(Ω^Ω^Ω)=LVO |- |(0)(1,1)(2,1)(3,1)(4,1)(1)(2,1)(3,1)(4,1)(5,1) |ψ(Ω^Ω^Ω+ψ(Ω^Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1) |ψ(Ω^Ω^Ω+Ω) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2)(3,1)(4,1)(5,1)(6,1) |ψ(Ω^Ω^Ω+Ω*ψ(Ω^Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1) |ψ(Ω^Ω^Ω+Ω^2) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3)(4,1)(5,1)(6,1)(7,1) |ψ(Ω^Ω^Ω+Ω^ψ(Ω^Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1) |ψ(Ω^Ω^Ω+Ω^Ω) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)(6,1) |ψ(Ω^Ω^Ω+Ω^Ω*ψ(Ω^Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(2,1)(3,1) |ψ(Ω^Ω^Ω+Ω^(Ω*2)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(3) |ψ(Ω^Ω^Ω+Ω^(Ω*ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(3)(4,1)(5,1)(6,1)(7,1) |ψ(Ω^Ω^Ω+Ω^(Ω*ψ(Ω^Ω^Ω))) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(3,1) |ψ(Ω^Ω^Ω+Ω^Ω^2) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)(8,1) |ψ(Ω^Ω^Ω+Ω^Ω^ψ(Ω^Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(1,1)(2,1)(3,1)(4,1) |ψ(Ω^Ω^Ω*2) |- |(0)(1,1)(2,1)(3,1)(4,1)(2)(3,1)(4,1)(5,1)(6,1) |ψ(Ω^Ω^Ω*ψ(Ω^Ω^Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(2,1) |ψ(Ω^(Ω^Ω+1)) |- |(0)(1,1)(2,1)(3,1)(4,1)(2,1)(3)(4,1)(5,1)(6,1)(7,1) |ψ(Ω^(Ω^Ω+ψ(Ω^Ω^Ω))) |- |(0)(1,1)(2,1)(3,1)(4,1)(2,1)(3,1) |ψ(Ω^(Ω^Ω+Ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(2,1)(3,1)(4) |ψ(Ω^(Ω^Ω+Ω^ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)(8,1) |ψ(Ω^(Ω^Ω+Ω^ψ(Ω^Ω^Ω))) |- |(0)(1,1)(2,1)(3,1)(4,1)(2,1)(3,1)(4,1) |ψ(Ω^(Ω^Ω*2)) |- |(0)(1,1)(2,1)(3,1)(4,1)(3) |ψ(Ω^(Ω^Ω*ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(3,1) |ψ(Ω^Ω^(Ω+1)) |- |(0)(1,1)(2,1)(3,1)(4,1)(3,1)(4) |ψ(Ω^Ω^(Ω+ω)) |- |(0)(1,1)(2,1)(3,1)(4,1)(3,1)(4)(5,1)(6,1)(7,1)(8,1) |ψ(Ω^Ω^(Ω+ψ(Ω^Ω^Ω))) |- |(0)(1,1)(2,1)(3,1)(4,1)(3,1)(4,1) |ψ(Ω^Ω^(Ω*2)) |- |(0)(1,1)(2,1)(3,1)(4,1)(4,1) |ψ(Ω^Ω^Ω^2) |- |(0)(1,1)(2,1)(3,1)(4,1)(4,1)(3,1) |ψ(Ω^Ω^(Ω^2+1)) |- |(0)(1,1)(2,1)(3,1)(4,1)(4,1)(3,1)(4,1)(4,1) |ψ(Ω^Ω^(Ω^2*2)) |- |(0)(1,1)(2,1)(3,1)(4,1)(4,1)(4,1) |ψ(Ω^Ω^Ω^3) |- |(0)(1,1)(2,1)(3,1)(4,1)(5,1) |ψ(Ω^Ω^Ω^Ω) |- |(0)(1,1)(2,1)(3,1)(4,1)(5,1)(3,1)(4,1)(5,1) |ψ(Ω^Ω^(Ω^Ω*2)) |- |(0)(1,1)(2,1)(3,1)(4,1)(5,1)(4,1) |ψ(Ω^Ω^Ω^(Ω+1)) |- |(0)(1,1)(2,1)(3,1)(4,1)(5,1)(4,1)(5,1) |ψ(Ω^Ω^Ω^(Ω*2)) |- |(0)(1,1)(2,1)(3,1)(4,1)(5,1)(5,1) |ψ(Ω^Ω^Ω^Ω^2) |- |(0)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) |ψ(Ω^Ω^Ω^Ω^Ω) |- |(0)(1,1)(2,2) |ψ(Ω_2)=BHO |- |(0)(1,1)(2,2)(1) |ψ(Ω_2+1) |- |(0)(1,1)(2,2)(1)(2,1) |ψ(Ω_2+ψ(Ω)) |- |(0)(1,1)(2,2)(1)(2,1)(3,2) |ψ(Ω_2+ψ(Ω_2)) |- |(0)(1,1)(2,2)(1)(2,1)(3,2)(2) |ψ(Ω_2+ψ(Ω_2+1)) |- |(0)(1,1)(2,2)(1)(2,1)(3,2)(2)(3,1)(4,2) |ψ(Ω_2+ψ(Ω_2+ψ(Ω_2))) |- |(0)(1,1)(2,2)(1,1) |ψ(Ω_2+Ω) |- |(0)(1,1)(2,2)(1,1)(2) |ψ(Ω_2+Ω*ω) |- |(0)(1,1)(2,2)(1,1)(2)(3,1)(4,2) |ψ(Ω_2+Ω*ψ(Ω_2)) |- |(0)(1,1)(2,2)(1,1)(2,1) |ψ(Ω_2+Ω^2) |- |(0)(1,1)(2,2)(1,1)(2,2) |ψ(Ω_2+ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(2) |ψ(Ω_2+ψ_1(Ω_2+1)) |- |(0)(1,1)(2,2)(2)(3,1)(4,2) |ψ(Ω_2+ψ_1(Ω_2+ψ(Ω_2))) |- |(0)(1,1)(2,2)(2,1) |ψ(Ω_2+ψ_1(Ω_2+Ω)) |- |(0)(1,1)(2,2)(2,1)(1,1)(2,2) |ψ(Ω_2+ψ_1(Ω_2+Ω)+ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(2,1)(1,1)(2,2)(2)(3,1)(4,2)(4,1) |ψ(Ω_2+ψ_1(Ω_2+Ω)+ψ_1(Ω_2+ψ(Ω_2+ψ_1(Ω_2+Ω)))) |- |(0)(1,1)(2,2)(2,1)(1,1)(2,2)(2,1) |ψ(Ω_2+ψ_1(Ω_2+Ω)*2) |- |(0)(1,1)(2,2)(2,1)(2) |ψ(Ω_2+ψ_1(Ω_2+Ω+1)) |- |(0)(1,1)(2,2)(2,1)(2,1) |ψ(Ω_2+ψ_1(Ω_2+Ω*2)) |- |(0)(1,1)(2,2)(2,1)(3) |ψ(Ω_2+ψ_1(Ω_2+Ω*ω)) |- |(0)(1,1)(2,2)(2,1)(3)(4,1)(5,2) |ψ(Ω_2+ψ_1(Ω_2+Ω*ψ(Ω_2))) |- |(0)(1,1)(2,2)(2,1)(3,1) |ψ(Ω_2+ψ_1(Ω_2+Ω^2)) |- |(0)(1,1)(2,2)(2,1)(3,2) |ψ(Ω_2+ψ_1(Ω_2+ψ_1(Ω_2))) |- |(0)(1,1)(2,2)(2,1)(3,2)(3) |ψ(Ω_2+ψ_1(Ω_2+ψ_1(Ω_2+1))) |- |(0)(1,1)(2,2)(2,1)(3,2)(3,1) |ψ(Ω_2+ψ_1(Ω_2+ψ_1(Ω_2+Ω))) |- |(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2) |ψ(Ω_2+ψ_1(Ω_2+ψ_1(Ω_2+ψ_1(Ω_2)))) |- |(0)(1,1)(2,2)(2,2) |ψ(Ω_2*2) |- |(0)(1,1)(2,2)(2,2)(1,1)(2,2) |ψ(Ω_2*2+ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(2,2)(1,1)(2,2)(2,2) |ψ(Ω_2*2+ψ_1(Ω_2*2)) |- |(0)(1,1)(2,2)(2,2)(2) |ψ(Ω_2*2+ψ_1(Ω_2*2+1)) |- |(0)(1,1)(2,2)(2,2)(2,1) |ψ(Ω_2*2+ψ_1(Ω_2*2+Ω)) |- |(0)(1,1)(2,2)(2,2)(2,1)(3,2)(3,2) |ψ(Ω_2*2+ψ_1(Ω_2*2+ψ_1(Ω_2*2))) |- |(0)(1,1)(2,2)(2,2)(2,2) |ψ(Ω_2*3) |- |(0)(1,1)(2,2)(3) |ψ(Ω_2*ω) |- |(0)(1,1)(2,2)(3)(2,2)(3) |ψ(Ω_2*ω*2) |- |(0)(1,1)(2,2)(3)(4,1) |ψ(Ω_2*ψ(Ω)) |- |(0)(1,1)(2,2)(3)(4,1)(5,2) |ψ(Ω_2*ψ(Ω_2)) |- |(0)(1,1)(2,2)(3,1) |ψ(Ω_2*Ω) |- |(0)(1,1)(2,2)(3,1)(2,2)(3,1) |ψ(Ω_2*Ω*2) |- |(0)(1,1)(2,2)(3,1)(3,1) |ψ(Ω_2*Ω^2) |- |(0)(1,1)(2,2)(3,1)(4,2) |ψ(Ω_2*ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(3,1)(4,2)(5) |ψ(Ω_2*ψ_1(Ω_2*ω)) |- |(0)(1,1)(2,2)(3,1)(4,2)(5,1) |ψ(Ω_2*ψ_1(Ω_2*Ω)) |- |(0)(1,1)(2,2)(3,2) |ψ(Ω_2^2)=ψ(ζ(Ω+1)) |- |(0)(1,1)(2,2)(3,2)(1,1)(2,2) |ψ(Ω_2^2+ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2) |ψ(Ω_2^2+ψ_1(Ω_2^2)) |- |(0)(1,1)(2,2)(3,2)(2) |ψ(Ω_2^2+ψ_1(Ω_2^2+1)) |- |(0)(1,1)(2,2)(3,2)(2)(3,1)(4,2)(5,2) |ψ(Ω_2^2+ψ_1(Ω_2^2+ψ(Ω_2^2))) |- |(0)(1,1)(2,2)(3,2)(2,1) |ψ(Ω_2^2+ψ_1(Ω_2^2+Ω)) |- |(0)(1,1)(2,2)(3,2)(2,1)(1,1)(2,2)(3,2)(2)(3,1)(4,2)(5,2)(4,1) |ψ(Ω_2^2+ψ_1(Ω_2^2+Ω)+ψ_1(Ω_2^2+ψ(Ω_2^2+ψ_1(Ω_2^2+Ω)))) |- |(0)(1,1)(2,2)(3,2)(2,1)(2) |ψ(Ω_2^2+ψ_1(Ω_2^2+Ω+1)) |- |(0)(1,1)(2,2)(3,2)(2,1)(2,1) |ψ(Ω_2^2+ψ_1(Ω_2^2+Ω*2)) |- |(0)(1,1)(2,2)(3,2)(2,1)(3,2) |ψ(Ω_2^2+ψ_1(Ω_2^2+ψ_1(Ω_2))) |- |(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2) |ψ(Ω_2^2+ψ_1(Ω_2^2+ψ_1(Ω_2^2))) |- |(0)(1,1)(2,2)(3,2)(2,2) |ψ(Ω_2^2+Ω_2) |- |(0)(1,1)(2,2)(3,2)(2,2)(3) |ψ(Ω_2^2+Ω_2*ω) |- |(0)(1,1)(2,2)(3,2)(2,2)(3,1) |ψ(Ω_2^2+Ω_2*Ω) |- |(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2) |ψ(Ω_2^2+Ω_2*ψ_1(Ω_2^2)) |- |(0)(1,1)(2,2)(3,2)(2,2)(3,2) |ψ(Ω_2^2*2) |- |(0)(1,1)(2,2)(3,2)(3) |ψ(Ω_2^2*ω) |- |(0)(1,1)(2,2)(3,2)(3)(4,1)(5,2)(6,2) |ψ(Ω_2^2*ψ(Ω_2^2)) |- |(0)(1,1)(2,2)(3,2)(3,1) |ψ(Ω_2^2*Ω) |- |(0)(1,1)(2,2)(3,2)(3,1)(4,2) |ψ(Ω_2^2*ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(3,2)(3,2) |ψ(Ω_2^3) |- |(0)(1,1)(2,2)(3,2)(4) |ψ(Ω_2^ω) |- |(0)(1,1)(2,2)(3,2)(4)(1,1)(2,2)(3,2)(4) |ψ(Ω_2^ω+ψ_1(Ω_2^ω)) |- |(0)(1,1)(2,2)(3,2)(4)(2) |ψ(Ω_2^ω+ψ_1(Ω_2^ω+1)) |- |(0)(1,1)(2,2)(3,2)(4)(2,1) |ψ(Ω_2^ω+ψ_1(Ω_2^ω+Ω)) |- |(0)(1,1)(2,2)(3,2)(4)(2,1)(3,2)(4,2)(5) |ψ(Ω_2^ω+ψ_1(Ω_2^ω+ψ_1(Ω_2^ω))) |- |(0)(1,1)(2,2)(3,2)(4)(2,2) |ψ(Ω_2^ω+Ω_2) |- |(0)(1,1)(2,2)(3,2)(4)(2,2)(3,1) |ψ(Ω_2^ω+Ω_2*Ω) |- |(0)(1,1)(2,2)(3,2)(4)(2,2)(3,2)(4) |ψ(Ω_2^ω*2) |- |(0)(1,1)(2,2)(3,2)(4)(3,1) |ψ(Ω_2^ω*Ω) |- |(0)(1,1)(2,2)(3,2)(4)(3,2) |ψ(Ω_2^(ω+1)) |- |(0)(1,1)(2,2)(3,2)(4)(4) |ψ(Ω_2^ψ(2)) |- |(0)(1,1)(2,2)(3,2)(4,1) |ψ(Ω_2^Ω) |- |(0)(1,1)(2,2)(3,2)(4,1)(5,2) |ψ(Ω_2^ψ_1(Ω_2)) |- |(0)(1,1)(2,2)(3,2)(4,1)(5,2)(6,2) |ψ(Ω_2^ψ_1(Ω_2^2)) |- |(0)(1,1)(2,2)(3,2)(4,2) |ψ(Ω_2^Ω_2) |- |(0)(1,1)(2,2)(3,2)(4,2)(2,2)(3,2)(4,1)(5,2)(6,2)(7,2) |ψ(Ω_2^Ω_2+Ω_2^ψ_1(Ω_2^Ω_2)) |- |(0)(1,1)(2,2)(3,2)(4,2)(2,2)(3,2)(4,2) |ψ(Ω_2^Ω_2*2) |- |(0)(1,1)(2,2)(3,2)(4,2)(3,1) |ψ(Ω_2^Ω_2*Ω) |- |(0)(1,1)(2,2)(3,2)(4,2)(3,2) |ψ(Ω_2^(Ω_2+1)) |- |(0)(1,1)(2,2)(3,2)(4,2)(3,2)(4,1) |ψ(Ω_2^(Ω_2+Ω)) |- |(0)(1,1)(2,2)(3,2)(4,2)(3,2)(4,2) |ψ(Ω_2^(Ω_2*2)) |- |(0)(1,1)(2,2)(3,2)(4,2)(4,1) |ψ(Ω_2^(Ω_2*Ω)) |- |(0)(1,1)(2,2)(3,2)(4,2)(4,2) |ψ(Ω_2^Ω_2^2) |- |(0)(1,1)(2,2)(3,2)(4,2)(5) |ψ(Ω_2^Ω_2^ω) |- |(0)(1,1)(2,2)(3,2)(4,2)(5,2) |ψ(Ω_2^Ω_2^Ω_2) |- |(0)(1,1)(2,2)(3,3) |ψ(Ω_3)=ψ(ε(Ω_2+1)) |- |(0)(1,1)(2,2)(3,3)(1,1) |ψ(Ω_3+Ω) |- |(0)(1,1)(2,2)(3,3)(1,1)(2,2)(3,3) |ψ(Ω_3+ψ_1(Ω_3)) |- |(0)(1,1)(2,2)(3,3)(2,1) |ψ(Ω_3+ψ_1(Ω_3+Ω)) |- |(0)(1,1)(2,2)(3,3)(2,2) |ψ(Ω_3+Ω_2) |- |(0)(1,1)(2,2)(3,3)(2,2)(3,3) |ψ(Ω_3+ψ_2(Ω_3)) |- |(0)(1,1)(2,2)(3,3)(3) |ψ(Ω_3+ψ_2(Ω_3+1)) |- |(0)(1,1)(2,2)(3,3)(3,2)(4,3) |ψ(Ω_3+ψ_2(Ω_3+ψ_2(Ω_3))) |- |(0)(1,1)(2,2)(3,3)(3,3) |ψ(Ω_3*2) |- |(0)(1,1)(2,2)(3,3)(4,2) |ψ(Ω_3*Ω_2) |- |(0)(1,1)(2,2)(3,3)(4,2)(5,3) |ψ(Ω_3*ψ_2(Ω_3)) |- |(0)(1,1)(2,2)(3,3)(4,3) |ψ(Ω_3^2) |- |(0)(1,1)(2,2)(3,3)(4,3)(3,3)(4,2)(5,3)(6,3) |ψ(Ω_3^2+Ω_3*ψ_2(Ω_3^2)) |- |(0)(1,1)(2,2)(3,3)(4,3)(3,3)(4,3) |ψ(Ω_3^2*2) |- |(0)(1,1)(2,2)(3,3)(4,3)(4,3) |ψ(Ω_3^3) |- |(0)(1,1)(2,2)(3,3)(4,3)(5,3) |ψ(Ω_3^Ω_3) |- |(0)(1,1)(2,2)(3,3)(4,3)(5,3)(3,3)(4,3)(5,2)(6,3)(7,3)(8,3) |ψ(Ω_3^Ω_3+Ω_3^ψ_2(Ω_3^Ω_3)) |- |(0)(1,1)(2,2)(3,3)(4,3)(5,3)(3,3)(4,3)(5,3) |ψ(Ω_3^Ω_3*2) |- |(0)(1,1)(2,2)(3,3)(4,3)(5,3)(4,3) |ψ(Ω_3^(Ω_3+1)) |- |(0)(1,1)(2,2)(3,3)(4,3)(5,3)(5,3) |ψ(Ω_3^Ω_3^2) |- |(0)(1,1)(2,2)(3,3)(4,3)(5,3)(6,3) |ψ(Ω_3^^3) |- |(0)(1,1)(2,2)(3,3)(4,4) |ψ(Ω_4) |- |(0)(1,1,1) |ψ(Ω_ω)=BO |} [[分类:分析]]
返回
BMS分析Part1:0~BO
。
查看“︁BMS分析Part1:0~BO”︁的源代码
来自Googology Wiki