打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁SSS 分析”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
SSS 分析
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目展示[[Bashicu急矩阵|BSM]]分析的第一部分。 \begin{aligned} & 0=1 \\ & 0,0=2 \\ & 0,0,0=3 \\ & 0,1=\omega \\ & 0,1,0=\omega+1 \\ & 0,1,0,0=\omega+2 \\ & 0,1,0,0,1=\omega\times2 \\ & 0,1,0,0,1,0,0,1=\omega\times3 \\ & 0,1,0,1=\omega^2 \end{aligned} <nowiki>\begin{aligned} & 0,1,0,1,0,0,1=\omega^2+\omega \\ & 0,1,0,1,0,0,1,0,0,1=\omega^2+\omega\times2 \\ & 0,1,0,1,0,0,1,0,1=\omega^2\times2 \\ & 0,1,0,1,0,0,1,0,1,0,0,1,0,1=\omega^2\times3 \\ & 0,1,0,1,0,1=\omega^3 \\ & 0,1,0,1,0,1,0,1=\omega^4 \\ & 0,1,1=\omega^\omega \\ & 0,1,1,0,0,1,0,1=\omega^\omega+\omega^2 \\ & 0,1,1,0,0,1,1=\omega^\omega\times2 \\ & 0,1,1,0,1=\omega^{\omega+1} \\ & 0,1,1,0,1,0,0,1,1,0,1=\omega^{\omega+1}\times2 \\ & 0,1,1,0,1,0,1=\omega^{\omega+2} \\ & 0,1,1,0,1,0,1,1=\omega^{\omega\times2} \\ & 0,1,1,0,1,0,1,1,0,1=\omega^{\omega\times2+1} \\ & 0,1,1,0,1,0,1,1,0,1,0,1,1=\omega^{\omega\times3} \\ & 0,1,1,0,1,1=\omega^{\omega^2} \\ & 0,1,1,0,1,1,0,1=\omega^{\omega^2+1} \\ & 0,1,1,0,1,1,0,1,0,1,1,0,1,1=\omega^{\omega^2\times2} \\ & 0,1,1,0,1,1,0,1,1=\omega^{\omega^3} \\ & 0,1,1,1=\omega^{\omega^\omega} \\ & 0,1,1,1,1=\omega^{\omega^{\omega^\omega}} \\ & 0,1,1,2=\psi(0) \end{aligned}</nowiki> \begin{aligned} & 0,1,1,2,0,0,1=\psi(0)+\omega \\ & 0,1,1,2,0,0,1,0,1=\psi(0)+\omega^2 \\ & 0,1,1,2,0,0,1,1=\psi(0)+\omega^\omega \\ & 0,1,1,2,0,0,1,1,2=\psi(0)\times2 \\ & 0,1,1,2,0,1=\psi(0)\times\omega \\ & 0,1,1,2,0,1,0,0,1,1,2,0,1=\psi(0)\times\omega\times2 \\ & 0,1,1,2,0,1,0,1=\psi(0)\times\omega^2 \\ & 0,1,1,2,0,1,0,1,1=\psi(0)\times\omega^\omega \\ & 0,1,1,2,0,1,0,1,1,2=\psi(0)^2 \\ & 0,1,1,2,0,1,0,1,1,2,0,1=\psi(0)^2\times\omega \\ & 0,1,1,2,0,1,0,1,1,2,0,1,0,1,1,2=\psi(0)^3 \\ & 0,1,1,2,0,1,1=\psi(0)^\omega \\ & 0,1,1,2,0,1,1,0,1,0,1,1,2=\psi(0)^{\omega+1} \\ & 0,1,1,2,0,1,1,0,1,0,1,1,2,0,1,1=\psi(0)^{\omega\times2} \\ & 0,1,1,2,0,1,1,0,1,1=\psi(0)^{\omega^2} \\ & 0,1,1,2,0,1,1,0,1,1,1=\psi(0)^{\omega^\omega} \\ & 0,1,1,2,0,1,1,0,1,1,2=\psi(0)^{\psi(0)} \\ & 0,1,1,2,0,1,1,1=\psi(0)^{\psi(0)^\omega} \\ & 0,1,1,2,0,1,1,2=\psi(1) \end{aligned} <nowiki>\begin{aligned} & 0,1,1,2,0,1,1,2,0,1,1,2=\psi(2) \\ & 0,1,1,2,1=\psi(\omega) \\ & 0,1,1,2,1,0,1=\psi(\omega)\times\omega \\ & 0,1,1,2,1,0,1,0,1,1,2=\psi(\omega)\times\psi(0) \\ & 0,1,1,2,1,0,1,0,1,1,2,0,1,1,2=\psi(\omega)\times\psi(1) \\ & 0,1,1,2,1,0,1,0,1,1,2,1=\psi(\omega)^2 \\ & 0,1,1,2,1,0,1,0,1,1,2,1,0,1,0,1,1,2,1=\psi(\omega)^3 \\ & 0,1,1,2,1,0,1,1=\psi(\omega)^\omega \\ & 0,1,1,2,1,0,1,1,0,1,1,2=\psi(\omega)^{\psi(\omega)} \\ & 0,1,1,2,1,0,1,1,1=\psi(\omega)^{\psi(\omega)^{\omega}} \\ & 0,1,1,2,1,0,1,1,2=\psi(\omega+1) \\ \end{aligned}</nowiki> \begin{aligned} & 0,1,1,2,1,0,1,1,2,0,1,1,2=\psi(\omega+2) \\ & 0,1,1,2,1,0,1,1,2,0,1,1,2,1=\psi(\omega\times2) \\ & 0,1,1,2,1,0,1,1,2,1=\psi(\omega^2) \\ & 0,1,1,2,1,0,1,1,2,1,0,1,1,2=\psi(\omega^2+1) \\ & 0,1,1,2,1,0,1,1,2,1,0,1,1,2,0,1,1,2,1=\psi(\omega^2+\omega) \\ & 0,1,1,2,1,0,1,1,2,1,0,1,1,2,0,1,1,2,1,0,1,1,2,1=\psi(\omega^2\times2) \\ & 0,1,1,2,1,0,1,1,2,1,0,1,1,2,1=\psi(\omega^3) \\ & 0,1,1,2,1,1=\psi(\omega^\omega) \\ & 0,1,1,2,1,1,1=\psi(\omega^{\omega^\omega}) \\ & 0,1,1,2,1,1,2=\psi(\psi(0)) \end{aligned} \begin{aligned} & 0,1,1,2,1,1,2,0,1=\psi(\psi(0))\times\omega \\ & 0,1,1,2,1,1,2,0,1,1,2=\psi(\psi(0)+1) \\ & 0,1,1,2,1,1,2,0,1,1,2,0,1,1,2,1,1,2=\psi(\psi(0)\times2) \\ & 0,1,1,2,1,1,2,0,1,1,2,1=\psi(\psi(0)\times\omega) \\ & 0,1,1,2,1,1,2,0,1,1,2,1,1=\psi(\psi(0)^\omega) \\ & 0,1,1,2,1,1,2,0,1,1,2,1,1,2=\psi(\psi(1)) \\ & 0,1,1,2,1,1,2,1=\psi(\psi(\omega)) \\ & 0,1,1,2,1,1,2,1,0,1,1,2,1,1,2,1=\psi(\psi(\omega^2)) \\ & 0,1,1,2,1,1,2,1,1=\psi(\psi(\omega^\omega)) \\ & 0,1,1,2,1,1,2,1,1,2=\psi(\psi(\psi(0))) \\ & 0,1,1,2,1,2=\psi(\Omega) \end{aligned} \begin{aligned} & 0,1,1,2,1,2,0,1,1,2=\psi(\Omega+1) \\ & 0,1,1,2,1,2,0,1,1,2,0,1,1,2,1=\psi(\Omega+\omega) \\ & 0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,1,2=\psi(\Omega+\psi(0)) \\ & 0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,1,2,1,1,2=\psi(\Omega+\psi(\psi(0))) \\ & 0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,2=\psi(\Omega+\psi(\Omega)) \\ & 0,1,1,2,1,2,0,1,1,2,0,1,1,2,1,2,0,1,1,2=\psi(\Omega+\psi(\Omega)+1) \\ & 0,1,1,2,1,2,0,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\omega) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2=\psi(\Omega+\psi(\Omega)\times\omega+1) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,0,1,1,2,1,2,0,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\omega\times2) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\omega^2) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,1=\psi(\Omega+\psi(\Omega)\times\omega^\omega) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,1,2=\psi(\Omega+\psi(\Omega)\times\psi(0)) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,1,2,1=\psi(\Omega+\psi(\Omega)\times\psi(\omega)) \\ & 0,1,1,2,1,2,0,1,1,2,1,0,1,1,2,1,2=\psi(\Omega+\psi(\Omega)^2) \\ & 0,1,1,2,1,2,0,1,1,2,1,1=\psi(\Omega+\psi(\Omega)^\omega) \\ & 0,1,1,2,1,2,0,1,1,2,1,1,2=\psi(\Omega+\psi(\Omega+1)) \\ & 0,1,1,2,1,2,0,1,1,2,1,1,2,1=\psi(\Omega+\psi(\Omega+\psi(\Omega)\times\omega)) \\ & 0,1,1,2,1,2,0,1,1,2,1,1,2,1,1=\psi(\Omega+\psi(\Omega+\psi(\Omega)^\omega)) \\ & 0,1,1,2,1,2,0,1,1,2,1,1,2,1,1,2=\psi(\Omega+\psi(\Omega+\psi(\Omega+1))) \\ & 0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega\times2) \\ \end{aligned} \begin{aligned} & 0,1,1,2,1,2,0,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega\times3) \\ & 0,1,1,2,1,2,1=\psi(\Omega\times\omega) \\ & 0,1,1,2,1,2,1,0,1,1,2,1,2=\psi(\Omega\times\omega+\Omega) \\ & 0,1,1,2,1,2,1,0,1,1,2,1,2,0,1,1,2,1,2,1=\psi(\Omega\times\omega\times2) \\ & 0,1,1,2,1,2,1,0,1,1,2,1,2,1=\psi(\Omega\times\omega^2) \\ & 0,1,1,2,1,2,1,1=\psi(\Omega\times\omega^\omega) \\ & 0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(0)) \\ & 0,1,1,2,1,2,1,1,2,0,1,1,2,1,2=\psi(\Omega\times\psi(0)+\Omega) \\ & 0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1=\psi(\Omega\times\psi(0)\times\omega) \\ & 0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,0,1,1,2,1,2,1,1=\psi(\Omega\times\psi(0)\times\omega^2) \\ & 0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(0)^2) \\ & 0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,1=\psi(\Omega\times\psi(0)^\omega) \\ & 0,1,1,2,1,2,1,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(1)) \\ & 0,1,1,2,1,2,1,1,2,1=\psi(\Omega\times\psi(\omega)) \\ & 0,1,1,2,1,2,1,1,2,1,1=\psi(\Omega\times\psi(\omega^\omega)) \\ & 0,1,1,2,1,2,1,1,2,1,1,2=\psi(\Omega\times\psi(\psi(0))) \\ & 0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega\times\psi(\Omega)) \\ & 0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2=\psi(\Omega\times\psi(\Omega)+\Omega) \\ & 0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1=\psi(\Omega\times\psi(\Omega)\times\omega) \\ & 0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1,1,2=\psi(\Omega\times\psi(\Omega+1)) \\ & 0,1,1,2,1,2,1,1,2,1,2,0,1,1,2,1,2,1,1,2,1,2=\psi(\Omega\times\psi(\Omega\times2)) \\ & 0,1,1,2,1,2,1,1,2,1,2,1=\psi(\Omega\times\psi(\Omega\times\omega)) \\ & 0,1,1,2,1,2,1,2=\psi(\Omega^2) \end{aligned} \begin{aligned} & 0,1,1,2,1,2,1,2,0,1,1,2,1,2=\psi(\Omega^2+\Omega) \\ & 0,1,1,2,1,2,1,2,0,1,1,2,1,2,1,2=\psi(\Omega^2\times2) \\ & 0,1,1,2,1,2,1,2,1=\psi(\Omega^2\times\omega) \\ & 0,1,1,2,1,2,1,2,1,1,2=\psi(\Omega^2\times\psi(0)) \\ & 0,1,1,2,1,2,1,2,1,1,2,1,2=\psi(\Omega^2\times\psi(\Omega)) \\ & 0,1,1,2,1,2,1,2,1,1,2,1,2,1,2=\psi(\Omega^2\times\psi(\Omega^2)) \\ & 0,1,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2=\psi(\Omega^2\times\psi(\Omega^2\times\psi(0))) \\ & 0,1,1,2,1,2,1,2,1,2=\psi(\Omega^3) \\ & 0,1,1,2,1,2,1,2,1,2,1,2=\psi(\Omega^4) \\ & 0,1,1,2,2=\psi(\Omega^\omega) \end{aligned} <nowiki>\begin{aligned} & 0,1,1,2,2,0,1,1,2=\psi(\Omega^\omega+1) \\ & 0,1,1,2,2,0,1,1,2,1,2=\psi(\Omega^\omega+\Omega^2) \\ & 0,1,1,2,2,0,1,1,2,1,2,1,2=\psi(\Omega^\omega+\Omega^3) \\ & 0,1,1,2,2,0,1,1,2,2=\psi(\Omega^\omega\times2) \\ & 0,1,1,2,2,1=\psi(\Omega^\omega\times\omega) \\ & 0,1,1,2,2,1,1,2=\psi(\Omega^\omega\times\psi(0)) \\ & 0,1,1,2,2,1,1,2,1,2=\psi(\Omega^\omega\times\psi(\Omega)) \\ & 0,1,1,2,2,1,1,2,1,2,1,2=\psi(\Omega^\omega\times\psi(\Omega^2)) \\ & 0,1,1,2,2,1,1,2,1,2,2=\psi(\Omega^\omega\times\psi(\Omega^\omega)) \\ & 0,1,1,2,2,1,2=\psi(\Omega^{\omega+1}) \\ & 0,1,1,2,2,1,2,1,2=\psi(\Omega^{\omega+2}) \\ & 0,1,1,2,2,1,2,1,2,2=\psi(\Omega^{\omega\times2}) \\ & 0,1,1,2,2,1,2,2=\psi(\Omega^{\omega^2}) \\ & 0,1,1,2,2,2=\psi(\Omega^{\omega^\omega}) \\ & 0,1,1,2,2,2,1,2,2=\psi(\Omega^{\omega^{\omega+1}}) \\ & 0,1,1,2,2,3=\psi(\Omega^{\psi(0)}) \end{aligned}</nowiki> \begin{aligned} & 0,1,1,2,2,3,1,2=\psi(\Omega^{\psi(0)+1}) \\ & 0,1,1,2,2,3,1,2,1,2,2,3=\psi(\Omega^{\psi(0)\times2}) \\ & 0,1,1,2,2,3,1,2,2=\psi(\Omega^{\psi(0)\times\omega}) \\ & 0,1,1,2,2,3,1,2,2,2=\psi(\Omega^{\psi(0)^\omega}) \\ & 0,1,1,2,2,3,1,2,2,3=\psi(\Omega^{\psi(1)}) \\ & 0,1,1,2,2,3,2=\psi(\Omega^{\psi(\omega)}) \\ & 0,1,1,2,2,3,2,2,3=\psi(\Omega^{\psi(\psi(0))}) \\ & 0,1,1,2,2,3,2,2,3,2,2,3=\psi(\Omega^{\psi(\psi(\psi(0)))}) \\ & 0,1,1,2,2,3,2,3=\psi(\Omega^{\psi(\Omega)}) \\ & 0,1,1,2,2,3,2,3,2,3=\psi(\Omega^{\psi(\Omega^2)}) \\ & 0,1,1,2,2,3,3=\psi(\Omega^{\psi(\Omega^\omega)}) \\ & 0,1,1,2,2,3,3,3=\psi(\Omega^{\psi(\Omega^{\omega^\omega})}) \\ & 0,1,1,2,2,3,3,4=\psi(\Omega^{\psi(\Omega^{\psi(0)})}) \\ \end{aligned} <math>0,1,2=\psi(\Omega^\Omega)</math> [[分类:分析]]
返回
SSS 分析
。
查看“︁SSS 分析”︁的源代码
来自Googology Wiki