打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁BMS分析Part2:BO~EBO”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
BMS分析Part2:BO~EBO
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目展示[[Bashicu矩阵|BMS]]强度分析的第二部分 {| class="wikitable" |BMS |Standard(BOCF) |- |(0)(1,1,1) |ψ(Ω_ω) = Buchholz's Ordinal |- |(0)(1,1,1)(0) |ψ(Ω_ω)+1 |- |(0)(1,1,1)(1) |ψ(Ω_ω+1) |- |(0)(1,1,1)(1)(2,1) |ψ(Ω_ω+SCO) |- |(0)(1,1,1)(1)(2,1)(3,2) |ψ(Ω_ω+BHO) |- |(0)(1,1,1)(1)(2,1,1) |ψ(Ω_ω+BO) |- |(0)(1,1,1)(1)(2,1,1)(2) |ψ(Ω_ω+ψ(Ω_ω+1)) |- |(0)(1,1,1)(1)(2,1,1)(2)(3,1,1) |ψ(Ω_ω+ψ(Ω_ω+BO) |- |(0)(1,1,1)(1,1) |ψ(Ω_ω+Ω) |- |(0)(1,1,1)(1,1)(1,1) |ψ(Ω_ω+Ω*2) |- |(0)(1,1,1)(1,1)(2) |ψ(Ω_ω+Ω*ω) |- |(0)(1,1,1)(1,1)(2)(3,1,1) |ψ(Ω_ω+Ω*BO) |- |(0)(1,1,1)(1,1)(2,1) |ψ(Ω_ω+Ω^2) |- |(0)(1,1,1)(1,1)(2,2) |ψ(Ω_ω+ψ_1(Ω_2)) |- |(0)(1,1,1)(1,1)(2,2)(3,3) |ψ(Ω_ω+ψ_1(Ω_3)) |- |(0)(1,1,1)(1,1)(2,2,1) |ψ(Ω_ω+ψ_1(Ω_ω)) |- |(0)(1,1,1)(1,1)(2,2,1)(1) |ψ(Ω_ω+ψ_1(Ω_ω)+1) |- |(0)(1,1,1)(1,1)(2,2,1)(1,1) |ψ(Ω_ω+ψ_1(Ω_ω)+Ω) |- |(0)(1,1,1)(1,1)(2,2,1)(1,1)(2,2) |ψ(Ω_ω+ψ_1(Ω_ω)+ψ_1(Ω_2)) |- |(0)(1,1,1)(1,1)(2,2,1)(1,1)(2,2,1) |ψ(Ω_ω+ψ_1(Ω_ω)*2) |- |(0)(1,1,1)(1,1)(2,2,1)(2) |ψ(Ω_ω+ψ_1(Ω_ω+1)) |- |(0)(1,1,1)(1,1)(2,2,1)(2)(3,1,1) |ψ(Ω_ω+ψ_1(Ω_ω+BO)) |- |(0)(1,1,1)(1,1)(2,2,1)(2,1) |ψ(Ω_ω+ψ_1(Ω_ω+Ω)) |- |(0)(1,1,1)(1,1)(2,2,1)(2,2) |ψ(Ω_ω+Ω_2) |- |(0)(1,1,1)(1,1)(2,2,1)(2,2)(3,3,1) |ψ(Ω_ω+ψ_2(Ω_ω)) |- |(0)(1,1,1)(1,1,1) |ψ(Ω_ω*2) |- |(0)(1,1,1)(1,1,1)(1,1) |ψ(Ω_ω*2+Ω) |- |(0)(1,1,1)(1,1,1)(1,1)(2,2,1)(2,2,1) |ψ(Ω_ω*2+ψ_1(Ω_ω*2)) |- |(0)(1,1,1)(1,1,1)(1,1)(2,2,1)(2,2,1)(2,2)(3,3,1)(3,3,1) |ψ(Ω_ω*2+ψ_1(Ω_ω*2+ψ_2(Ω_ω*2))) |- |(0)(1,1,1)(1,1,1)(1,1,1) |ψ(Ω_ω*3) |- |(0)(1,1,1)(1,1,1)(1,1,1)(1,1,1) |ψ(Ω_ω*4) |- |(0)(1,1,1)(2) |ψ(Ω_ω*ω) |- |(0)(1,1,1)(2)(1,1) |ψ(Ω_ω*ω+Ω) |- |(0)(1,1,1)(2)(1,1)(2,2,1) |ψ(Ω_ω*ω+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2)(1,1)(2,2,1)(3) |ψ(Ω_ω*ω+ψ_1(Ω_ω*ω)) |- |(0)(1,1,1)(2)(1,1)(2,2,1)(3)(2,2) |ψ(Ω_ω*ω+ψ_1(Ω_ω*ω+ψ_2(Ω_3))) |- |(0)(1,1,1)(2)(1,1)(2,2,1)(3)(2,2)(3,3,1) |ψ(Ω_ω*ω+ψ_1(Ω_ω*ω+ψ_2(Ω_ω))) |- |(0)(1,1,1)(2)(1,1,1) |ψ(Ω_ω*(ω+1)) |- |(0)(1,1,1)(2)(1,1,1)(1,1,1) |ψ(Ω_ω*(ω+2)) |- |(0)(1,1,1)(2)(1,1,1)(2) |ψ(Ω_ω*(ω2)) |- |(0)(1,1,1)(2)(2) |ψ(Ω_ω*ω^2) |- |(0)(1,1,1)(2)(3,1) |ψ(Ω_ω*SCO) |- |(0)(1,1,1)(2)(3,1,1) |ψ(Ω_ω*BO) |- |(0)(1,1,1)(2,1) |ψ(Ω_ω*Ω) |- |(0)(1,1,1)(2,1)(1) |ψ(Ω_ω*Ω+1) |- |(0)(1,1,1)(2,1)(1,1) |ψ(Ω_ω*Ω+Ω) |- |(0)(1,1,1)(2,1)(1,1)(1,1) |ψ(Ω_ω*Ω+Ω*2) |- |(0)(1,1,1)(2,1)(1,1)(2,1) |ψ(Ω_ω*Ω+Ω^2) |- |(0)(1,1,1)(2,1)(1,1)(2,2) |ψ(Ω_ω*Ω+ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(2) |ψ(Ω_ω*Ω+ψ_1(Ω_ω+1)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(2,2) |ψ(Ω_ω*Ω+ψ_1(Ω_ω+Ω_2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(2,2)(3,3) |ψ(Ω_ω*Ω+ψ_1(Ω_ω+ψ_2(Ω_3)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(2,2)(3,3,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω+ψ_2(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(2,2,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*Ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*Ω+1)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*Ω+Ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,1)(3,2,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*Ω+ψ_2(Ω_ω))) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,1)(3,2,1)(4,1) |ψ(Ω_ω*Ω+ψ_1(Ω_ω*Ω+ψ_2(Ω_ω*Ω))) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2) |ψ(Ω_ω*Ω+Ω_2) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3) |ψ(Ω_ω*Ω+ψ_2(Ω_3)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1) |ψ(Ω_ω*Ω+ψ_2(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1)(3,3) |ψ(Ω_ω*Ω+ψ_2(Ω_ω+Ω_3)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1)(3,3,1) |ψ(Ω_ω*Ω+ψ_2(Ω_ω*2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1)(4) |ψ(Ω_ω*Ω+ψ_2(Ω_ω*ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1)(4,1) |ψ(Ω_ω*Ω+ψ_2(Ω_ω*Ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1)(4,1)(3,3) |ψ(Ω_ω*Ω+Ω_3) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1) |ψ(Ω_ω*(Ω+1)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(1,1) |ψ(Ω_ω*(Ω+1)+Ω) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(1,1)(2,2,1)(3,1)(2,2,1) |ψ(Ω_ω*(Ω+1)+ψ_1(Ω_ω*(Ω+1))) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2) |ψ(Ω_ω*(Ω+1)+ψ_1(Ω_ω*(Ω+1)+1)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2,1) |ψ(Ω_ω*(Ω+1)+ψ_1(Ω_ω*(Ω+1)+Ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2,1)(3,2,1)(4,1)(3,2,1) |ψ(Ω_ω*(Ω+1)+ψ_1(Ω_ω*(Ω+1)+ψ_1(Ω_ω*(Ω+1))) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2,2) |ψ(Ω_ω*(Ω+1)+Ω_2) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2,2)(3,3,1)(4,1)(3,3,1) |ψ(Ω_ω*(Ω+1)+Ω_3) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2,2,1) |ψ(Ω_ω*(Ω+2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(2,2,1)(2,2,1) |ψ(Ω_ω*(Ω+3)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(3) |ψ(Ω_ω*(Ω+ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1)(3,1) |ψ(Ω_ω*Ω*2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(3) |ψ(Ω_ω*Ω*ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(3,1) |ψ(Ω_ω*Ω^2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(4) |ψ(Ω_ω*Ω^ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(4,2) |ψ(Ω_ω*ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(4,2,1) |ψ(Ω_ω*ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(4,2,1)(5,1) |ψ(Ω_ω*ψ_1(Ω_ω*Ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(4,2,1)(5,1)(6,2,1) |ψ(Ω_ω*ψ_1(Ω_ω*ψ_1(Ω_ω)))? |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2) |ψ(Ω_ω*Ω_2) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(1) |ψ(Ω_ω*Ω_2+1) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(1,1) |ψ(Ω_ω*Ω_2+Ω) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(1,1)(2,2,1) |ψ(Ω_ω*Ω_2+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(1,1)(2,2,1)(3,2) |ψ(Ω_ω*Ω_2+ψ_1(Ω_ω*Ω_2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2) |ψ(Ω_ω*Ω_2+ψ_1(Ω_ω*Ω_2+1)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,1) |ψ(Ω_ω*Ω_2+ψ_1(Ω_ω*Ω_2+Ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2) |ψ(Ω_ω*Ω_2+Ω_2) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1) |ψ(Ω_ω*Ω_2+ψ_2(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2) |ψ(Ω_ω*Ω_2+ψ_2(Ω_ω*Ω_2)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2)(3,3) |ψ(Ω_ω*Ω_2+Ω_3) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2)(3,3,1) |ψ(Ω_ω*(Ω_2+1)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2)(4) |ψ(Ω_ω*Ω_2*ω) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2)(5,3) |ψ(Ω_ω*ψ_2(Ω_3)) |- |(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,3) |ψ(Ω_ω*Ω_3) |- |(0)(1,1,1)(2,1)(1,1,1) |ψ(Ω_ω^2) = the First Lifting Ordinal |- |(0)(1,1,1)(2,1)(1,1,1)(1,1) |ψ(Ω_ω^2+Ω) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2) |ψ(Ω_ω^2+ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1) |ψ(Ω_ω^2+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2) |ψ(Ω_ω^2+ψ_1(Ω_ω*Ω)) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1) |ψ(Ω_ω^2+ψ_1(Ω_ω^2)) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1)(2,1)(3,2,1) |ψ(Ω_ω^2+ψ_1(Ω_ω^2+ψ_1(Ω_ω))) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1)(2,1)(3,2,1)(4,2)(3,2,1) |ψ(Ω_ω^2+ψ_1(Ω_ω^2+ψ_1(Ω_ω^2))) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1)(2,2) |ψ(Ω_ω^2+Ω_2) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1)(2,2)(3,3,1) |ψ(Ω_ω^2+ψ_2(Ω_ω)) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1)(2,2)(3,3,1)(4,3)(3,3,1) |ψ(Ω_ω^2+ψ_2(Ω_ω^2)) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1,1) |ψ(Ω_ω^2+Ω_ω) |- |(0)(1,1,1)(2,1)(1,1,1)(1,1,1)(1,1,1) |ψ(Ω_ω^2+Ω_ω*2) |- |(0)(1,1,1)(2,1)(1,1,1)(2) |ψ(Ω_ω^2+Ω_ω*ω) |- |(0)(1,1,1)(2,1)(1,1,1)(2,1) |ψ(Ω_ω^2+Ω_ω*Ω) |- |(0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1) |ψ(Ω_ω^2*2) |- |(0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1)(2) |ψ(Ω_ω^2*2+Ω_ω*ω) |- |(0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1)(2,1) |ψ(Ω_ω^2*2+Ω_ω*Ω) |- |(0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1) |ψ(Ω_ω^2*3) |- |(0)(1,1,1)(2,1)(2) |ψ(Ω_ω^2*ω) |- |(0)(1,1,1)(2,1)(2,1) |ψ(Ω_ω^2*Ω) |- |(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,1)(2,2,1) |ψ(Ω_ω^2*Ω+Ω_ω) |- |(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,1)(3,1)(2,2,1) |ψ(Ω_ω^2*(Ω+1)) |- |(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,2)(3,2) |ψ(Ω_ω^2*Ω_2) |- |(0)(1,1,1)(2,1)(2,1)(1,1,1) |ψ(Ω_ω^3) |- |(0)(1,1,1)(2,1)(2,1)(2,1)(1,1,1) |ψ(Ω_ω^4) |- |(0)(1,1,1)(2,1)(3) |ψ(Ω_ω^ω) |- |(0)(1,1,1)(2,1)(3)(4,1,1) |ψ(Ω_ω^BO) |- |(0)(1,1,1)(2,1)(3,1) |ψ(Ω_ω^Ω) |- |(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,2) |ψ(Ω_ω^Ω_2) |- |(0)(1,1,1)(2,1)(3,1)(1,1,1) |ψ(Ω_ω^Ω_ω) |- |(0)(1,1,1)(2,1)(3,1)(2) |ψ(Ω_ω^Ω_ω*ω) |- |(0)(1,1,1)(2,1)(3,1)(2,1) |ψ(Ω_ω^Ω_ω*Ω) |- |(0)(1,1,1)(2,1)(3,1)(2,1)(1,1,1) |ψ(Ω_ω^(Ω_ω+1)) |- |(0)(1,1,1)(2,1)(3,1)(2,1)(2,1)(1,1,1) |ψ(Ω_ω^(Ω_ω+2)) |- |(0)(1,1,1)(2,1)(3,1)(2,1)(3) |ψ(Ω_ω^(Ω_ω+ω)) |- |(0)(1,1,1)(2,1)(3,1)(2,1)(3,1)(1,1,1) |ψ(Ω_ω^(Ω_ω*2)) |- |(0)(1,1,1)(2,1)(3,1)(3) |ψ(Ω_ω^(Ω_ω*ω)) |- |(0)(1,1,1)(2,1)(3,1)(3,1) |ψ(Ω_ω^(Ω_ω*Ω)) |- |(0)(1,1,1)(2,1)(3,1)(3,1)(1,1,1) |ψ(Ω_ω^Ω_ω^2) |- |(0)(1,1,1)(2,1)(3,1)(3,1)(3,1)(1,1,1) |ψ(Ω_ω^Ω_ω^3) |- |(0)(1,1,1)(2,1)(3,1)(4) |ψ(Ω_ω^Ω_ω^ω) |- |(0)(1,1,1)(2,1)(3,1)(4,1)(1,1,1) |ψ(Ω_ω^Ω_ω^Ω_ω) |- |(0)(1,1,1)(2,1)(3,1)(4,1)(5,1)(1,1,1) |ψ(Ω_ω^^4) |- |(0)(1,1,1)(2,1)(3,2) |ψ(Ω_(ω+1)) = Takeuti-Feferman-Buchholz's Ordinal |- |(0)(1,1,1)(2,1)(3,2)(1) |ψ(Ω_(ω+1)+1) |- |(0)(1,1,1)(2,1)(3,2)(1,1) |ψ(Ω_(ω+1)+Ω) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2) |ψ(Ω_(ω+1)+ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1) |ψ(Ω_(ω+1)+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3) |ψ(Ω_(ω+1)+ψ_1(Ω_ω+*ω)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,1) |ψ(Ω_(ω+1)+ψ_1(Ω_ω*Ω)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2) |ψ(Ω_(ω+1)+ψ_1(Ω_ω*Ω_2)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(2,2,1) |ψ(Ω_(ω+1)+ψ_1(Ω_ω^2)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3) |ψ(Ω_(ω+1)+ψ_1(Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2) |ψ(Ω_(ω+1)+Ω_2) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2)(3,3) |ψ(Ω_(ω+1)+ψ_2(Ω_2)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2)(3,3,1) |ψ(Ω_(ω+1)+ψ_2(Ω_ω)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2)(3,3,1)(4,3) |ψ(Ω_(ω+1)+ψ_2(Ω_ω+Ω_3)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2)(3,3,1)(4,3)(3,3,1) |ψ(Ω_(ω+1)+ψ_2(Ω_ω^2)) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2)(3,3,1)(4,3)(5,4) |ψ(Ω_(ω+1)+ψ_2(Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2)(1,1)(2,2,1)(3,2)(4,3)(2,2)(3,3,1)(4,3)(5,4)(3,3) |ψ(Ω_(ω+1)+Ω_3) |- |(0)(1,1,1)(2,1)(3,2)(1,1,1) |ψ(Ω_(ω+1)+Ω_ω) |- |(0)(1,1,1)(2,1)(3,2)(1,1,1)(2,1)(3,2) |ψ(Ω_(ω+1)+ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2)(2) |ψ(Ω_(ω+1)+ψω(Ω_(ω+1)+1)) |- |(0)(1,1,1)(2,1)(3,2)(2,1) |ψ(Ω_(ω+1)+ψω(Ω_(ω+1)+Ω)) |- |(0)(1,1,1)(2,1)(3,2)(2,1)(3,2) |ψ(Ω_(ω+1)+ψω(Ω_(ω+1)*2)) |- |(0)(1,1,1)(2,1)(3,2)(3) |ψ(Ω_(ω+1)+ψω(Ω_(ω+1)*ω)) |- |(0)(1,1,1)(2,1)(3,2)(3,1) |ψ(Ω_(ω+1)+ψω(Ω_(ω+1)*Ω)) |- |(0)(1,1,1)(2,1)(3,2)(3,2) |ψ(Ω_(ω+1)*2) |- |(0)(1,1,1)(2,1)(3,2)(4) |ψ(Ω_(ω+1)*ω) |- |(0)(1,1,1)(2,1)(3,2)(4,1) |ψ(Ω_(ω+1)*Ω) |- |(0)(1,1,1)(2,1)(3,2)(4,1)(1,1,1) |ψ(Ω_(ω+1)*Ω_ω) |- |(0)(1,1,1)(2,1)(3,2)(4,1)(5,2) |ψ(Ω_(ω+1)*ψω(Ω_(ω+1)*ω)) |- |(0)(1,1,1)(2,1)(3,2)(4,2) |ψ(Ω_(ω+1)^2) |- |(0)(1,1,1)(2,1)(3,2)(4,2)(4,2) |ψ(Ω_(ω+1)^3) |- |(0)(1,1,1)(2,1)(3,2)(4,2)(5) |ψ(Ω_(ω+1)^ω) |- |(0)(1,1,1)(2,1)(3,2)(4,2)(5,1) |ψ(Ω_(ω+1)^Ω) |- |(0)(1,1,1)(2,1)(3,2)(4,2)(5,1)(1,1,1) |ψ(Ω_(ω+1)^Ω_ω) |- |(0)(1,1,1)(2,1)(3,2)(4,2)(5,2) |ψ(Ω_(ω+1)^Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2)(4,2)(5,2)(6,2) |ψ(Ω_(ω+1)^^3) |- |(0)(1,1,1)(2,1)(3,2)(4,3) |ψ(Ω_(ω+2)) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(4,3) |ψ(Ω_(ω+2)*2) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5) |ψ(Ω_(ω+2)*ω) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5,1) |ψ(Ω_(ω+2)*Ω) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5,1)(1,1,1) |ψ(Ω_(ω+2)*Ω_ω) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5,2) |ψ(Ω_(ω+2)*Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5,3) |ψ(Ω_(ω+2)^2) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5,3)(6,3) |ψ(Ω_(ω+2)^^2) |- |(0)(1,1,1)(2,1)(3,2)(4,3)(5,4) |ψ(Ω_(ω+3)) |- |(0)(1,1,1)(2,1)(3,2,1) |ψ(Ω_(ω2)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1) |ψ(Ω_(ω2)+Ω) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2) |ψ(Ω_(ω2)+ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1) |ψ(Ω_(ω2)+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2) |ψ(Ω_(ω2)+ψ_1(Ω_ω*Ω_2)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(2,2,1) |ψ(Ω_(ω2)+ψ_1(Ω_ω^2)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(3,2)(2,2,1) |ψ(Ω_(ω2)+ψ_1(Ω_ω^3)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(4,3) |ψ(Ω_(ω2)+ψ_1(Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(4,3,1) |ψ(Ω_(ω2)+ψ_1(Ω_(ω2))) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(4,3,1)(2,2) |ψ(Ω_(ω2)+Ω_2) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(4,3,1)(2,2)(3,3,1)(4,3) |ψ(Ω_(ω2)+ψ_2(Ω_ω)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(4,3,1)(2,2)(3,3,1)(4,3)(5,4,1) |ψ(Ω_(ω2)+ψ_2(Ω_(ω2)) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1)(2,2,1)(3,2)(4,3,1)(2,2)(3,3,1)(4,3)(5,4,1)(3,3) |ψ(Ω_(ω2)+Ω_3) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1) |ψ(Ω_(ω2)+Ω_ω) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(1,1,1) |ψ(Ω_(ω2)+Ω_ω*2) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(2) |ψ(Ω_(ω2)+Ω_ω*ω) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(2,1) |ψ(Ω_(ω2)+Ω_ω*Ω) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(2,1)(1,1,1) |ψ(Ω_(ω2)+Ω_ω^2) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(2,1)(3,2) |ψ(Ω_(ω2)+ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(2,1)(3,2,1) |ψ(Ω_(ω2)+ψω(Ω_(ω2))) |- |(0)(1,1,1)(2,1)(3,2,1)(2) |ψ(Ω_(ω2)+ψω(Ω_(ω2)+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(2,1) |ψ(Ω_(ω2)+ψω(Ω_(ω2)+Ω)) |- |(0)(1,1,1)(2,1)(3,2,1)(2,1)(1,1,1) |ψ(Ω_(ω2)+ψω(Ω_(ω2)+Ω_ω)) |- |(0)(1,1,1)(2,1)(3,2,1)(2,1)(1,1,1)(2,1)(3,2,1) |ψ(Ω_(ω2)+ψω(Ω_(ω2)*2)) |- |(0)(1,1,1)(2,1)(3,2,1)(2,1)(3,2) |ψ(Ω_(ω2)+ψω(Ω_(ω2)+ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2,1)(2,1)(3,2,1) |ψ(Ω_(ω2)+ψω(Ω_(ω2)+ψω(Ω_(ω2))) |- |(0)(1,1,1)(2,1)(3,2,1)(3,1)(4,2,1) |ψ(Ω_(ω2)+ψω(Ω_(ω2)+ψω(Ω_(ω2+ψω(Ω_(ω2))))) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2) |ψ(Ω_(ω2)+Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,2) |ψ(Ω_(ω2)+Ω_(ω+1)^2) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,2)(5,2) |ψ(Ω_(ω2)+Ω_(ω+1)^Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3) |ψ(Ω_(ω2)+ψ_(ω+1)(Ω_(ω+2))) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3,1) |ψ(Ω_(ω2)+ψ_(ω+1)(Ω_(ω2))) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3,1)(4,3) |ψ(Ω_(ω2)+Ω_(ω+2)) |- |(0)(1,1,1)(2,1)(3,2,1)(3,2,1) |ψ(Ω_(ω2)*2) |- |(0)(1,1,1)(2,1)(3,2,1)(4) |ψ(Ω_(ω2)*ω) |- |(0)(1,1,1)(2,1)(3,2,1)(4,1) |ψ(Ω_(ω2)*Ω) |- |(0)(1,1,1)(2,1)(3,2,1)(4,1)(1,1,1) |ψ(Ω_(ω2)*Ω_ω) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2) |ψ(Ω_(ω2)*Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2) |ψ(Ω_(ω2)*Ω_(ω+1)+Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1) |ψ(Ω_(ω2)*Ω_(ω+1)+ψ_(ω+1)(Ω_(ω2))) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2) |ψ(Ω_(ω2)*Ω_(ω+1)+ψ_(ω+1)(Ω_(ω2)*Ω_(ω+1))) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(4,3) |ψ(Ω_(ω2)*Ω_(ω+1)+Ω_(ω+2)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(4,3,1) |ψ(Ω_(ω2)*(Ω_(ω+1)+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(4,3,1)(5,2) |ψ(Ω_(ω2)*Ω_(ω+1)*2) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(5) |ψ(Ω_(ω2)*Ω_(ω+1)*ω) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(5,2) |ψ(Ω_(ω2)*Ω_(ω+1)^2) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(6) |ψ(Ω_(ω2)*Ω_(ω+1)^ω) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(6,2) |ψ(Ω_(ω2)*Ω_(ω+1)^Ω_(ω+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(6,3) |ψ(Ω_(ω2)*ψ_(ω+1)(Ω_(ω+2))) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)(6,3,1) |ψ(Ω_(ω2)*ψ_(ω+1)(Ω_(ω2))) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,3) |ψ(Ω_(ω2)*Ω_(ω+2)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,3)(6,4,1)(7,4) |ψ(Ω_(ω2)*Ω_(ω+3)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2,1) |ψ(Ω_(ω2)^2) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(4,2)(3,2,1) |ψ(Ω_(ω2)^3) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(5) |ψ(Ω_(ω2)^ω) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,2)(3,2,1) |ψ(Ω_(ω2)^Ω_(ω2)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3) |ψ(Ω_(ω2+1)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(6,4) |ψ(Ω_(ω2+2)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3,1) |ψ(Ω_(ω3)) |- |(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3,1)(6,4)(7,5,1) |ψ(Ω_(ω4)) |- |(0)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)) |- |(0)(1,1,1)(2,1,1)(1,1) |ψ(Ω_(ω^2)+Ω) |- |(0)(1,1,1)(2,1,1)(1,1)(2,2) |ψ(Ω_(ω^2)+ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1,1)(1,1)(2,2,1) |ψ(Ω_(ω^2)+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1,1)(1,1)(2,2,1)(3,2,1) |ψ(Ω_(ω^2)+ψ_1(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(1,1)(2,2,1)(3,2,1)(2,2) |ψ(Ω_(ω^2)+Ω_2) |- |(0)(1,1,1)(2,1,1)(1,1)(2,2,1)(3,2,1)(2,2)(3,3,1)(4,3,1) |ψ(Ω_(ω^2)+ψ_2(Ω_(ω^2)) |- |(0)(1,1,1)(2,1,1)(1,1,1) |ψ(Ω_(ω^2)+Ω_ω)) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2) |ψ(Ω_(ω^2)+Ω_ω*ω) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1) |ψ(Ω_(ω^2)+Ω_ω*Ω) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,1) |ψ(Ω_(ω^2)+Ω_ω^2) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2) |ψ(Ω_(ω^2)+ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2)(4,3) |ψ(Ω_(ω^2)+ψω(Ω_(ω+2))) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1) |ψ(Ω_(ω^2)+ψω(Ω_(ω2))) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1) |ψ(Ω_(ω^2)+ψω(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2) |ψ(Ω_(ω^2)+Ω_(ω+1)) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1) |ψ(Ω_(ω^2)+Ω_(ω2)) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)*2) |- |(0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)*3) |- |(0)(1,1,1)(2,1,1)(2) |ψ(Ω_(ω^2)*ω) |- |(0)(1,1,1)(2,1,1)(2)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)*(ω+1)) |- |(0)(1,1,1)(2,1,1)(2)(1,1,1)(2,1,1)(2) |ψ(Ω_(ω^2)*(ω2)) |- |(0)(1,1,1)(2,1,1)(2)(2) |ψ(Ω_(ω^2)*ω^2) |- |(0)(1,1,1)(2,1,1)(2)(3) |ψ(Ω_(ω^2)*ω^ω) |- |(0)(1,1,1)(2,1,1)(2)(3,1) |ψ(Ω_(ω^2)*SCO) |- |(0)(1,1,1)(2,1,1)(2)(3,1,1) |ψ(Ω_(ω^2)*BO) |- |(0)(1,1,1)(2,1,1)(2)(3,1,1)(4,1,1) |ψ(Ω_(ω^2)*ψ(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(2,1) |ψ(Ω_(ω^2)*Ω) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1) |ψ(Ω_(ω^2)*Ω_ω) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(1,1,1) |ψ(Ω_(ω^2)*Ω_ω+Ω_ω) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1) |ψ(Ω_(ω^2)*Ω_ω+Ω_ω*Ω) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(1,1,1) |ψ(Ω_(ω^2)*Ω_ω+Ω_ω^2) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2) |ψ(Ω_(ω^2)*Ω_ω+ψ_ω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1) |ψ(Ω_(ω^2)*Ω_ω+ψ_ω(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1) |ψ(Ω_(ω^2)*Ω_ω+ψ_ω(Ω_(ω^2)*Ω)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1) |ψ(Ω_(ω^2)*Ω_ω+ψ_ω(Ω_(ω^2)*Ω_ω)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2) |ψ(Ω_(ω^2)*Ω_ω+Ω_(ω+1)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1) |ψ(Ω_(ω^2)*Ω_ω+Ω_(ω2)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1) |ψ(Ω_(ω^2)*(Ω_ω+1)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1)(5,1)(1,1,1) |ψ(Ω_(ω^2)*Ω_ω*2) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4) |ψ(Ω_(ω^2)*Ω_ω*ω) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2,1) |ψ(Ω_(ω^2)*Ω_ω^2) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(5) |ψ(Ω_(ω^2)*Ω_ω^ω) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(6,2) |ψ(Ω_(ω^2)*ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(6,2,1)(7,2,1) |ψ(Ω_(ω^2)*ψω(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2) |ψ(Ω_(ω^2)*Ω_(ω+1)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1) |ψ(Ω_(ω^2)*Ω_(ω2)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,2)(6,3,1)(7,3,1)(8,3) |ψ(Ω_(ω^2)*Ω_(ω2+1)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,2)(6,3,1)(7,3,1)(8,3)(7,3,1) |ψ(Ω_(ω^2)*Ω_(ω3)) |- |(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)^2) |- |(0)(1,1,1)(2,1,1)(2,1)(2) |ψ(Ω_(ω^2)^2*ω) |- |(0)(1,1,1)(2,1,1)(2,1)(2,1) |ψ(Ω_(ω^2)^2*Ω) |- |(0)(1,1,1)(2,1,1)(2,1)(2,1)(1,1,1) |ψ(Ω_(ω^2)^2*Ω_ω) |- |(0)(1,1,1)(2,1,1)(2,1)(2,1)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)^3) |- |(0)(1,1,1)(2,1,1)(2,1)(2,1)(2,1)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)^4) |- |(0)(1,1,1)(2,1,1)(2,1)(3) |ψ(Ω_(ω^2)^ω) |- |(0)(1,1,1)(2,1,1)(2,1)(3,1) |ψ(Ω_(ω^2)^Ω) |- |(0)(1,1,1)(2,1,1)(2,1)(3,1)(1,1,1) |ψ(Ω_(ω^2)^Ω_ω) |- |(0)(1,1,1)(2,1,1)(2,1)(3,1)(1,1,1)(2,1,1) |ψ(Ω_(ω^2)^Ω_(ω^2)) |- |(0)(1,1,1)(2,1,1)(2,1)(3,2) |ψ(Ω_(ω^2+1)) |- |(0)(1,1,1)(2,1,1)(2,1)(3,2,1) |ψ(Ω_(ω^2+ω)) |- |(0)(1,1,1)(2,1,1)(2,1)(3,2,1)(4,2,1) |ψ(Ω_(ω^2*2)) |- |(0)(1,1,1)(2,1,1)(2,1,1) |ψ(Ω_(ω^3)) |- |(0)(1,1,1)(2,1,1)(2,1,1)(2,1,1) |ψ(Ω_(ω^4)) |- |(0)(1,1,1)(2,1,1)(3) |ψ(Ω_(ω^ω)) |- |(0)(1,1,1)(2,1,1)(3)(4,1,1) |ψ(Ω_BO) |- |(0)(1,1,1)(2,1,1)(3,1) |ψ(Ω_Ω) = Bird's Ordinal |- |(0)(1,1,1)(2,1,1)(3,1)(1) |ψ(Ω_Ω+1) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1) |ψ(Ω_Ω+Ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2) |ψ(Ω_Ω+ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1) |ψ(Ω_Ω+ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1) |ψ(Ω_Ω+ψ_1(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1) |ψ(Ω_Ω+ψ_1(Ω_Ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(2,2) |ψ(Ω_Ω+Ω_2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(2,2,1) |ψ(Ω_Ω+Ω_ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(2,2,1)(3,2,1) |ψ(Ω_Ω+Ω_(ω^2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(2,2,1)(3,2,1)(4,1) |ψ(Ω_Ω*2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3) |ψ(Ω_Ω*ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,1) |ψ(Ω_Ω*Ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2) |ψ(Ω_Ω*Ω_2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(2,2,1) |ψ(Ω_Ω*Ω_ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(2,2,1)(3,2,1)(4,1) |ψ(Ω_Ω^2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(4,3) |ψ(Ω_(Ω+1)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(4,3,1) |ψ(Ω_(Ω+ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(4,3,1)(5,3,1) |ψ(Ω_(Ω+ω^2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(4,3,1)(5,3,1)(6,1) |ψ(Ω_(Ω*2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2,1) |ψ(Ω_(Ω*ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2,1)(4,1) |ψ(Ω_(Ω^2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(4) |ψ(Ω_(Ω^ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(4,1) |ψ(Ω_(Ω^Ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(5,1) |ψ(Ω_(Ω^Ω^Ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(5,2) |ψ(Ω_ψ_1(Ω_2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(5,2,1) |ψ(Ω_ψ_1(Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(5,2,1)(6,2,1)(7,1) |ψ(Ω_ψ_1(Ω_Ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,2) |ψ(Ω_Ω_2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,2)(2,2)(3,3,1)(4,3,1)(5,3) |ψ(Ω_Ω_3) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1) |ψ(Ω_Ω_ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1) |ψ(Ω_Ω_ω+ψω(Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1) |ψ(Ω_Ω_ω+ψω(Ω_(ω^2))) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1) |ψ(Ω_Ω_ω+ψω(Ω_Ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1) |ψ(Ω_Ω_ω+ψω(Ω_Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2) |ψ(Ω_Ω_ω+Ω_(ω+1)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1) |ψ(Ω_Ω_ω+Ω_(ω2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1) |ψ(Ω_Ω_ω+Ω_(ω^2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1)(5,1) |ψ(Ω_Ω_ω+Ω_Ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1)(5,1)(1,1,1) |ψ(Ω_Ω_ω*2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4) |ψ(Ω_Ω_ω*ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(1,1,1) |ψ(Ω_Ω_ω*Ω_ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(5,2) |ψ(Ω_Ω_ω*ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(5,2,1)(6,2,1)(7,1)(1,1,1) |ψ(Ω_Ω_ω*ψω(Ω_Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2) |ψ(Ω_Ω_ω*Ω_(ω+1)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(3,2,1) |ψ(Ω_Ω_ω*Ω_(ω2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(3,2,1)(4,2,1)(5,1)(1,1,1) |ψ(Ω_Ω_ω^2) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4) |ψ(Ω_Ω_ω^2*ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5) |ψ(Ω_Ω_ω^ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3) |ψ(Ω_(Ω_ω+1)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3,1) |ψ(Ω_(Ω_ω+ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3,1)(6,3,1)(7,1)(1,1,1) |ψ(Ω_(Ω_ω*2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2,1) |ψ(Ω_(Ω_ω*ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2,1)(5,1)(1,1,1) |ψ(Ω_(Ω_ω^2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(5) |ψ(Ω_(Ω_ω^ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(5,1)(1,1,1) |ψ(Ω_(Ω_ω^Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(6,2) |ψ(Ω_ψω(Ω_(ω+1))) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(6,2,1)(7,2,1)(8,1)(1,1,1) |ψ(Ω_ψω(Ω_Ω_ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2) |ψ(Ω_Ω_(ω+1)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(3,2,1) |ψ(Ω_Ω_(ω2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(3,2,1)(4,2)(5,3,1)(6,3,1)(7,3) |ψ(Ω_Ω_(ω2+1)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(3,2,1)(4,2)(5,3,1)(6,3,1)(7,3)(5,3,1) |ψ(Ω_Ω_(ω3)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1) |ψ(Ω_Ω_(ω^2)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3) |ψ(Ω_Ω_(ω^ω)) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3)(4,1,1) |ψ(Ω_Ω_BO) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1) |ψ(Ω_Ω_Ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(1,1,1) |ψ(Ω_Ω_Ω_ω) |- |(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1) |ψ(Ω_Ω_Ω_Ω) |- |(0)(1,1,1)(2,1,1)(3,1)(2) |ψ(I) = Extented Buchholz's Ordinal |} [[分类:分析]]
返回
BMS分析Part2:BO~EBO
。
查看“︁BMS分析Part2:BO~EBO”︁的源代码
来自Googology Wiki