打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁BHM分析”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
BHM分析
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本条目展示 [[BHM]] 的强度的列表分析。 === Part 1 === {| class="wikitable" !BHM !Veblen 函数 ! ! |- |<math>(0)</math> |<math>1</math> |- |<math>(0)(0)</math> |<math>2</math> |- |<math>(0)(0)(0)</math> |<math>3</math> |- |<math>(0)(1)</math> |<math>\omega</math> |- |<math>(0)(1)(0)</math> |<math>\omega +1</math> |- |<math>(0)(1)(0)(0)</math> |<math>\omega +2</math> |- |<math>(0)(1)(0)(0)(1)</math> |<math>\omega \times 2</math> |- |<math>(0)(1)(0)(0)(1)(0)</math> |<math>\omega \times 2 +1</math> |- |<math>(0)(1)(0)(0)(1)(0)(0)(1)</math> |<math>\omega \times 3</math> |- |<math>(0)(1)(0)(1)</math> |<math>\omega ^2</math> |- |<math>(0)(1)(0)(1)(0)</math> |<math>\omega ^2+1</math> |- |<math>(0)(1)(0)(1)(0)(0)(1)</math> |<math>\omega ^2+\omega</math> |- |<math>(0)(1)(0)(1)(0)(0)(1)(0)(0)(1)</math> |<math>\omega ^2+\omega\times 2</math> |- |<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)</math> |<math>\omega ^2\times 2</math> |- |<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)(0)(0)(1)</math> |<math>\omega ^2\times 2 + \omega</math> |- |<math>(0)(1)(0)(1)(0)(1)</math> |<math>\omega ^3</math> |- |<math>(0)(1)(1)</math> |<math>\omega ^\omega</math> |- |<math>(0)(1)(1)(0)</math> |<math>\omega ^\omega+1</math> |- |<math>(0)(1)(1)(0)(0)(1)</math> |<math>\omega ^\omega+\omega</math> |- |<math>(0)(1)(1)(0)(0)(1)(0)(1)</math> |<math>\omega ^\omega+\omega\times 2</math> |- |<math>(0)(1)(1)(0)(0)(1)(1)</math> |<math>\omega ^\omega \times 2</math> |- |<math>(0)(1)(1)(0)(1)</math> |<math>\omega ^{\omega +1}</math> |- |<math>(0)(1)(1)(0)(1)(0)(0)(1)</math> |<math>\omega ^{\omega +1}+\omega</math> |- |<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)</math> |<math>\omega ^{\omega +1}+\omega^{\omega}</math> |- |<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)(0)(1)</math> |<math>\omega ^{\omega +1}\times 2</math> |- |<math>(0)(1)(1)(0)(1)(0)(1)</math> |<math>\omega ^{\omega +2}</math> |- |<math>(0)(1)(1)(0)(1)(0)(1)(1)</math> |<math>\omega ^{\omega \times 2}</math> |- |<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)</math> |<math>\omega ^{\omega \times 2+1}</math> |- |<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math> |<math>\omega ^{\omega \times 3}</math> |- |<math>(0)(1)(1)(0)(1)(1)</math> |<math>\omega ^{\omega ^2}</math> |- |<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math> |<math>\omega ^{\omega ^2+\omega}</math> |- |<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math> |<math>\omega ^{\omega ^2\times 2}</math> |- |<math>(0)(1)(1)(0)(1)(1)(0)(1)(1)</math> |<math>\omega ^{\omega ^3}</math> |- |<math>(0)(1)(1)(1)</math> |<math>\omega ^{\omega ^\omega}</math> |- |<math>(0)(1)(1)(1)(0)(1)(1)</math> |<math>\omega ^{\omega ^{\omega+1}}</math> |- |<math>(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)(1)</math> |<math>\omega ^{\omega ^{\omega\times 2}}</math> |- |<math>(0)(1)(1)(1)(0)(1)(1)(1)</math> |<math>\omega ^{\omega ^{\omega^2}}</math> |- |<math>(0)(1)(1)(1)(1)</math> |<math>\omega ^{\omega ^{\omega^\omega}}</math> |- |<math>(0)(1)(2)</math> |<math>\varepsilon_0</math> |} === Part 2 === {| class="wikitable" !BHM !Veblen 函数 ! ! |- |<math>(0)(1)(2)(0)(0)(1)</math> |<math>\varepsilon_0 + \omega</math> |- |<math>(0)(1)(2)(0)(0)(1)(1)</math> |<math>\varepsilon_0 +\omega^2</math> |- |<math>(0)(1)(2)(0)(0)(1)(2)</math> |<math>\varepsilon_0 \times 2</math> |- |<math>(0)(1)(2)(0)(1)</math> |<math>\varepsilon_0 \times \omega</math> |- |<math>(0)(1)(2)(0)(1)(0)(1)(1)</math> |<math>\varepsilon_0 \times \omega^\omega</math> |- |<math>(0)(1)(2)(0)(1)(0)(1)(2)</math> |<math>\varepsilon_0 ^2</math> |- |<math>(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(0)(1)(2)</math> |<math>\varepsilon_0 ^3</math> |- |<math>(0)(1)(2)(0)(1)(1)</math> |<math>\varepsilon_0 ^\omega</math> |- |<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)</math> |<math>\varepsilon_0 ^{\omega+1}</math> |- |<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)(0)(1)(1)</math> |<math>\varepsilon_0 ^{\omega\times 2}</math> |- |<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)</math> |<math>\varepsilon_0 ^{\omega^2}</math> |- |<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)(1)</math> |<math>\varepsilon_0 ^{\omega^\omega}</math> |- |<math>(0)(1)(2)(0)(1)(1)(0)(1)(2)</math> |<math>\varepsilon_0 ^{\varepsilon_0}</math> |- |<math>(0)(1)(2)(0)(1)(1)(1)</math> |<math>\varepsilon_0 ^{\varepsilon_0\times \omega}</math> |- |<math>(0)(1)(2)(0)(1)(1)(1)(0)(1)(2)</math> |<math>\varepsilon_0 ^{\varepsilon_0^2}</math> |- |<math>(0)(1)(2)(0)(1)(1)(1)(1)</math> |<math>\varepsilon_0 ^{\varepsilon_0^\omega}</math> |- |<math>(0)(1)(2)(0)(1)(1)(1)(1)(0)(1)(2)</math> |<math>\varepsilon_0 ^{\varepsilon_0^{\varepsilon_0}}</math> |- |<math>(0)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_1 </math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)</math> |<math>\varepsilon_1 \times \omega</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)</math> |<math>\varepsilon_1 \times \varepsilon_0</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math> |<math>\varepsilon_1 \times \varepsilon_0^{\varepsilon_0}</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_1 ^2</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)</math> |<math>\varepsilon_1 ^\omega</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math> |<math>\varepsilon_1 ^{\varepsilon_0}</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_1 ^{\varepsilon_1}</math> |- |<math>(0)(1)(2)(0)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_2</math> |- |<math>(0)(1)(2)(1)</math> |<math>\varepsilon_\omega </math> |- |<math>(0)(1)(2)(1)(0)(1)(2)</math> |<math>\varepsilon_{\omega +1} </math> |- |<math>(0)(1)(2)(1)(0)(1)(2)(0)(1)(2)(1)</math> |<math>\varepsilon_{\omega \times 2} </math> |- |<math>(0)(1)(2)(1)(0)(1)(2)(1)</math> |<math>\varepsilon_{\omega ^2} </math> |- |<math>(0)(1)(2)(1)(1)</math> |<math>\varepsilon_{\omega ^\omega} </math> |- |<math>(0)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\varepsilon_0} </math> |- |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)</math> |<math>\varepsilon_{\varepsilon_0 \times \omega} </math> |- |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\varepsilon_0 ^2} </math> |- |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)</math> |<math>\varepsilon_{\varepsilon_0 ^ \omega} </math> |- |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\varepsilon_0 ^ {\varepsilon_0}} </math> |- |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\varepsilon_1} </math> |- |<math>(0)(1)(2)(1)(1)(2)(1)</math> |<math>\varepsilon_{\varepsilon_\omega} </math> |- |<math>(0)(1)(2)(1)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math> |- |<math>(0)(1)(2)(1)(2)</math> |<math>\zeta_0 </math> |- |<math>(0)(1)(2)(1)(2)</math> |<math>\zeta_0 </math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(0)(1)(2)(1)(2)</math> |<math>\zeta_0 ^2</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(1)</math> |<math>\zeta_0 ^\omega</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(1)(0)(1)(2)(1)(2)</math> |<math>\zeta_0 ^{\zeta_0}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_{\zeta_0 +1}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_{\zeta_0 +1}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)(0)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\zeta_0 +\varepsilon_0}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)</math> |<math>\varepsilon_{\zeta_0 \times \omega}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(2)</math> |<math>\varepsilon_{\zeta_0 ^2}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(2)</math> |<math>\varepsilon_{\zeta_0 ^{\zeta_0}}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(2)</math> |<math>\varepsilon_{\varepsilon_{\zeta_0 +1}}</math> |- |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math> |<math>\zeta_1</math> |- |<math>(0)(1)(2)(1)(2)(1)</math> |<math>\zeta_\omega</math> |- |<math>(0)(1)(2)(1)(2)(1)(1)(2)</math> |<math>\zeta_{\varepsilon_0}</math> |- |<math>(0)(1)(2)(1)(2)(1)(1)(2)(1)(2)</math> |<math>\zeta_{\zeta_0}</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)</math> |<math>\eta_0</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)</math> |<math>\varepsilon_{\eta_0+1}</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math> |<math>\zeta_{\eta_0+1}</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)(1)(2)</math> |<math>\eta_1</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)(1)</math> |<math>\eta_\omega</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)(1)(1)(2)(1)(2)(1)(2)</math> |<math>\eta_{\eta_0}</math> |- |<math>(0)(1)(2)(1)(2)(1)(2)(1)(2)</math> |<math>\varphi(4,0)</math> |- |<math>(0)(1)(2)(2)</math> |<math>\varphi(\omega,0)</math> |- |<math>(0)(1)(2)(2)(0)(1)(2)</math> |<math>\varphi(1,\varphi(\omega,0)+1)</math> |- |<math>(0)(1)(2)(2)(0)(1)(2)(2)</math> |<math>\varphi(\omega,1)</math> |- |<math>(0)(1)(2)(2)(1)</math> |<math>\varphi(\omega,\omega)</math> |- |<math>(0)(1)(2)(2)(1)(1)(2)</math> |<math>\varphi(\omega,\varepsilon_0)</math> |- |<math>(0)(1)(2)(2)(1)(1)(2)(1)(2)(2)</math> |<math>\varphi(\omega,\varphi(\omega,0))</math> |- |<math>(0)(1)(2)(2)(1)(2)</math> |<math>\varphi(\omega+1,0)</math> |- |<math>(0)(1)(2)(2)(1)(2)(1)(2)(2)</math> |<math>\varphi(\omega\times 2,0)</math> |- |<math>(0)(1)(2)(2)(1)(2)(2)</math> |<math>\varphi(\omega^2,0)</math> |- |<math>(0)(1)(2)(2)(2)</math> |<math>\varphi(\omega^\omega,0)</math> |- |<math>(0)(1)(2)(3)</math> |<math>\varphi(\varepsilon_0,0)</math> |- |<math>(0)(1)(2)(3)(1)(2)(3)</math> |<math>\varphi(\varepsilon_1,0)</math> |- |<math>(0)(1)(2)(3)(2)(3)</math> |<math>\varphi(\zeta_0,0)</math> |- |<math>(0)(1)(2)(3)(3)</math> |<math>\varphi(\varphi(\omega,0),0)</math> |- |<math>(0)(1)(2)(3)(4)</math> |<math>\varphi(\varphi(\varepsilon_0,0),0)</math> |- |<math>(0,0)(1,1)</math> |<math>\varphi(1,0,0)</math> |} === Part 3 === {| class="wikitable" !BHM !Veblen 函数 |- |<math>(0,0)(1,1)(0,0)</math> |<math>\varphi(1,0,0)+1</math> |- |<math>(0,0)(1,1)(0,0)(0,0)(1,1)</math> |<math>\varphi(1,0,0)\times2</math> |- |<math>(0,0)(1,1)(0,0)(1,0)</math> |<math>\omega^{\varphi(1,0,0)+1}</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(1,0)</math> |<math>\omega^{\omega^{\varphi(1,0,0)+1}}</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)</math> |<math>\varphi(1,\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(0,0)(1,1)</math> |<math>\varphi(1,\varphi(1,0,0)\times2)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(1,0)(2,0)</math> |<math>\varphi(1,\varphi(1,\varphi(1,0,0)+1))</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(2,0)</math> |<math>\varphi(2,\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)</math> |<math>\varphi(\omega,\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(1,0)(2,0)</math> |<math>\varphi(\omega+1,\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(1,0)(2,0)(2,0)</math> |<math>\varphi(\omega^2,\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(2,0)</math> |<math>\varphi(\omega^\omega,\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(1,0),\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(4,0)</math> |<math>\varphi(\varphi(\varphi(1,0),0),\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)</math> |<math>\varphi (\varphi (\varphi(\varphi(1,0),0),0),\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),1)</math> |- |<math>(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),2)</math> |- |<math>(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega)</math> |- |<math>(0,0)(1,1)(1,0)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),\omega+1)</math> |- |<math>(0,0)(1,1)(1,0)(0,0)(1,1)(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega\times2)</math> |- |<math>(0,0)(1,1)(1,0)(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega^2)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega^\omega)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega^{\omega^\omega})</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(2,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\omega,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0),0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,0)(4,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(\varphi(1,0),0),0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0,0)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0,0)+2)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0,0)+\omega)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0,0)\times2)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega^{\varphi(1,0,0)+1})</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,\varphi(1,0,0)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(2,\varphi(1,0,0)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\omega,\varphi(1,0,0)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0),\varphi(1,0,0)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\omega))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\omega+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\omega^\omega))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\omega,0)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,0)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),1)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+1,0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0)+1,0)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0)+1,0)\times2)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega^{\varphi(\varphi(1,0,0)+1,0)+1})</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,\varphi(\varphi(1,0,0)+1,0)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0)+1,0)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0)+1,0)\times2))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,\varphi(\varphi(1,0,0)+1,0)+1)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0)+1,0)+1)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+1,1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)</math> |<math>\varphi(\varphi(1,0,0)+1,\omega)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+1,\varphi(1,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0)+1,\varphi(1,0,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+1,\varphi(\varphi(1,0,0)+1,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+2,0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+\omega,0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(1,0,0)+\varphi(1,0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0)\times2,0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0)\times3,0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(2,0)</math> |<math>\varphi(\omega^{\varphi(1,0,0)+1},0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(1,\varphi(1,0,0)+1),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),1),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),1)+1,0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)(2,0)</math> |<math>\varphi(\omega^{\varphi(\varphi(1,0,0),1)+1},0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(1,\varphi(\varphi(1,0,0),1)+1),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),2),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\omega),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\omega+1),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\omega\times2),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\omega^\omega),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(1,0)),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(1,0,0)),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(1,0,0)+1),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\omega^{\varphi(1,0,0)+1}),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(1,\varphi(1,0,0)+1)),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),1)),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(2,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\omega)),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(2,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,0))),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0)+1,0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)(2,0)(3,0)</math> |<math>\varphi(\varphi(\varphi(1,0,0)+2,0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0)\times2,0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)(3,0)</math> |<math>\varphi(\varphi(\omega^{\varphi(1,0,0)+1},0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),1),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),\omega),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),\varphi(1,0)),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),\varphi(1,0,0)),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),\varphi(1,0,0)+1),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),1)),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\omega)),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)(4,0)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0)+1,0),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)(4,0)(5,0)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,\varphi(1,0,0)+1),0),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)(4,0)(5,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(\varphi(1,0,0),1),0),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(4,0)(5,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(\varphi(\varphi(1,0,0),1),0),0),0),0)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)</math> |<math>\varphi(1,0,1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(1,0,1)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\omega^{\varphi(1,0,1)+1})</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,1)+1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,1)+2))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,1)+\omega))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,1)\times2))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\omega^{\varphi(1,0,1)+1}))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,1)(3,1)</math> |<math>\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(\varphi(1,0,0),\varphi(1,0,1)+1)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,0)+1,\varphi(1,0,1)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,0)\times2,\varphi(1,0,1)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(1,0,0),1),\varphi(1,0,1)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,1)</math> |<math>\varphi(\varphi(\varphi(\varphi(1,0,0),1),0),\varphi(1,0,1)+1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,1)</math> |<math>\varphi(\varphi(1,0,1),1)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)</math> |<math>\varphi(\varphi(1,0,1),\omega)</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,1),\varphi(1,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,1),\varphi(1,0,0))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,1),\varphi(\varphi(1,0,0),1))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(1,0)</math> |<math>\varphi(\varphi(1,0,1),\varphi(\varphi(1,0,0),\omega))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1)</math> |<math>\varphi(\varphi(1,0,1),\varphi(\varphi(1,0,0),\varphi(1,0,0)))</math> |- |<math>(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)</math> |<math>\varphi(\varphi(1,0,1),\varphi(\varphi(1,0,0)+1,0))</math> |} [[分类:分析]]
返回
BHM分析
。
查看“︁BHM分析”︁的源代码
来自Googology Wiki